INSTRUCTIONS TO CANDIDATES

- Answer all questions in both sections \boldsymbol{A} and \boldsymbol{B}.

SECTION A

1. Given that $p^{2}=q r$, show that;

$$
\begin{equation*}
2 \log _{q} p \log _{r} p=\log _{q} p+\log _{r} p \tag{05marks}
\end{equation*}
$$

2. Evaluate;

$$
\begin{equation*}
\int_{1}^{4} \frac{(1+\sqrt{x})^{5}}{\sqrt{x}} d x \tag{05marks}
\end{equation*}
$$

3. Find the equations of the tangents to the parabola $y^{2}=6 x$ which pass through the point $(10,-8)$.
4. Solve the equation

$$
\begin{equation*}
\sqrt{x+5}+\sqrt{x+21}=\sqrt{6 x+40} \tag{05marks}
\end{equation*}
$$

5. If $y=3^{x}$, find $\frac{d^{2} y}{d x^{2}} \quad$ when $x=-1$.
(05 marks)
6. Solve the simultaneous equations

$$
\begin{aligned}
& \cos x+\cos y=1 \\
& \sec x+\sec y=4
\end{aligned}
$$

$$
\begin{equation*}
\text { for } 0^{\circ}<x, y<180^{\circ} \tag{05marks}
\end{equation*}
$$

7. Show that the lines $\boldsymbol{L}_{\mathbf{1}}$, vector equation $\boldsymbol{r}=\binom{2}{5}+\lambda\binom{2}{-3}$ and $\boldsymbol{L}_{\mathbf{2}}$, vector equation $\boldsymbol{r}=\binom{3}{-3}+\mu\binom{3}{2}$ are perpendicular and find the position vector of their point of intersection.
(05 marks)
8. Find the percentage increase in the volume of a cube when all the edges of the cube are increased by 2%.
(05 marks)

SECTION B (60 MARKS)

9. (a) Given that Z_{1} and Z_{2} are complex numbers, solve the simultaneous equations;

$$
\begin{array}{r}
4 \mathrm{Z}_{1}+3 \mathrm{Z}_{2}=23 \\
Z_{1}+i Z_{2}=6+8 i \tag{06marks}
\end{array}
$$

(b) If $Z=x+y i$, find the locus given by;

$$
\begin{equation*}
\left|\frac{Z-1}{Z+1-i}\right|=\frac{2}{5} \tag{06marks}
\end{equation*}
$$

10. Given that $x=\frac{1-t}{1+t}$ and $y=(1-t)(1+t)^{2}$, find $\frac{d^{2} y}{d x^{2}}$.
(12 marks)
11.(a) Find the coordinates of the foot of the perpendicular from the point $(2,-6)$ to the line $3 y-x+2=0$.
(04 marks)
(b) A circle touches both the x-axis and the line $4 x-3 y+4=0$. Its centre is in the first quadrant and lies on the line $x-y-1=0$. Prove that its equation is $x^{2}+y^{2}-6 x-4 y+9=0$.
(08 marks)
11. Express $y=\frac{64 x^{2}-148 x+78}{(4 x-5)^{3}}$ into partial fractions hence find $\int_{4}^{6} y d x$.
12. Given that $y=\frac{\cos x-2 \cos 2 x+\cos 3 x}{\cos x+2 \cos 2 x+\cos 3 x}$, Prove that $y=-\tan ^{2} \frac{x}{2}$ hence find the value of $\tan ^{2} 15^{\circ}$ in the form $p+q \sqrt{r}$ where p, q and r are integers and solve;
$2 y+\sec ^{2} \frac{x}{2}=0$ for $0^{\circ} \leq x \leq 360^{\circ}$
13. (a) Solve the differential equation;
$\frac{d y}{d x}=\sqrt{\frac{y}{x+1}}$ given that $y=9$ when $x=3$
(b) At time t minutes, the rate of change of temperature of a cooling liquid is proportional to the temperature, $T^{\circ} C$ of that liquid at that time. Initially $T=80$
(i) Show that $T=80 e^{-k t}$
(ii) If $T=20$ when $t=6$, find the time at which the temperature will reach $10^{\circ} \mathrm{C}$.
(07 marks)
14. (a) One root of the equation $x^{2}-6 x+k=0$ is three times the other. Find the roots and the value of k.
(05 marks)
(b) If x is so small that x^{5} and higher powers of x can be neglected such that $(1+x)^{6}\left(1-2 x^{3}\right)^{10} \approx 1+a x+b x^{2}+c x^{4}$.

Find the values of a, b and c.
(07 marks)
16. (a) Find the Cartesian equation of the plane containing the point $(1,3,1)$ and parallel to the vectors $\boldsymbol{i}-\boldsymbol{j}+3 \boldsymbol{k}$ and $2 \boldsymbol{i}+\boldsymbol{j}-3 \boldsymbol{k}$. (07 marks)
(b) Find the angle between the plane in (a) above and the line $\frac{x-6}{5}=\frac{y-1}{-1}=$ $\frac{z+1}{4}$
(05 marks)

END

