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Forces and mofion

In the beginning [if
there was such a thing)
God created Newton'’s
laws of motion toge .1er
with the necessary
masses and forces.
This is all; everything
beyond this follows
from the development
of appropriate
mathematical methods
by means of deduction.
Albert Einstein

Nis tightrope walker is stationary. There are a number of forces acting on
ewalker which cancel each other out, resulting in no motion. In order
or that to be possible, the cable must make small angles to the horizontal

so that the vertical components of the tension can cancel out the weight of
the walker. In that case, the tensions in the cable will be greater than the
walker’s weight.




gvaries around the
world, with 9.80ms™2
being a typical value.
Singapore, at 9.766,

has one of the lowest
values, and Helsinki,
with 9.825, has one of
the highest. You need

to look carefully at the
level of accuracy to
which gis given in an
problem. Your final
answer should al
reflect the accuracy o
the given information.

1 Forces and Newton’s laws of
motion

Modelling vocabulary

Mechanics is about modelling the real world. In order to do this, suitable
simplifying assumptions are often made so that mathematics can be applied to
situations and problems. This process involves identifying factors that can be
neglected without losing too much accuracy. Here are some commonly used
modelling terms which are used to describe such assumptions:

negligible: small enough to ignore
inextensible: for a string with negligible stretch
light: for an object with negligible mass
particle: an object with negligible dimensions
smooth: for a surface with negligible frictio
uniform: the same throughout.

Forces

A force is defined as the physica
depends on magnitude and di

Forces can start motion, stop

tion. In real’situations, several forces usually act on
se forces, known as the resultant force, determines

as the weight of the object.

Tension and thrust

When a string is pulled, as in Figure 3.1, it exerts a tension force opposite

to the pull. The tension acts along the string and is the same throughout the
string. A rigid rod can exert a tension force in a similar way to a string when it
is used to support or pull an object. It can also exert a thrust force when it is
in compression, as in Figure 3.2.The thrust acts along the rod and is the same
throughout the rod.

The tension on either side of a smooth pulley is the same, as shown in
Figure 3.3.
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Forces and Newton’s laws of motion

T (tension pulling Ii, W (weight of block)
down on ceiling)
T (thrust pushing

up on block)
7

T (tension pulling up
on object) T (thrust pushing

down on floor)

T
mg (weight of object) R (reaction from floor)
Figure 3.1 Figure 3.2 Figure 3.3

Normal reaction

eight and the normal
of action is normal

A book resting on a table is subjected to two forces, it
reaction of the table. It is called normal because its li
(at right angles) to the surface of the table. Since

the normal reaction is equal and opposite t

Note positive force.
al reaction
e is also often
led the normal

contact force.

is in equilibrium,
ieight ofithe book; it is a

In Figure 3.4, the A R (normal reactio
normal reaction is
vertical but this is not

always the case. For [ E
example, the normal
reaction on an object on
a slope is perpendicular Y. mg (wele
to the slope. Figure 3.4

If the book 1 se contact with the table (which might happen, for
instance, ifghe table is aceelerating rapidly downwards), the normal force
becomes z

his ram, the book on the table is being pushed by a force P parallel to the
“The book remains at rest because P is balanced by a frictional force, F,
the opposite direction to P.The magnitude of the frictional force is equal to
the pushing force P = F

A R (normal reaction)

The frictional force
E is also sometimes
fr|ct|on < called frictional

| contact force.

‘%

Y mg (weight)
Figure 3.5
If P is increased and the book starts to move, F is still present but now P > F.

Friction always acts in the opposite direction to the motion. Friction may
prevent the motion of an object or slow it down if it is moving.



Driving force

In problems about moving objects such as cars, all the forces acting along the
line of motion can usually be reduced to two or three: the driving force, the
resistance to motion and, possibly, a braking force.

Resistance Driving force

Braking force

Figure 3.6

m Figure 3.7 shows a block A of mass 10kg connected to a light scale pan by a

light inextensible string that passes over a light smoothypulley. The scale pan

H holds block B, also of mass 10kg. The system is in equilibrium.

ach of the masses,

(i) On separate diagrams, show all the forces a¢
the scale pan and the pulley.

uoljow pue saduo4 ¢ Jaydey)

(i) Find the value of the tension in the st

n (iii) Find the tension in the rod ho heypu
Figure 3.7 (iv) Find the normal reaction of B cale pan.
Solution
@) Tensionin t AR ERIE el Tension in the string Tenglon i
of scale pan on B holding pulley

E & '\ : \/ '
eight of A written as Weight of B Normal reaction Ten5|or_1 in the
10g and acting of B on scale pan string
vertically downwards.

Figure 3.8
(i1) Block A is in equilibrium: = T=10g¢g=98N.
(iii) The pulley is in equilibrium: = T, =27 =196 N.

(iv) Block B is in equilibrium: = R=10¢g=98N.

Newton’s laws of motion

1 Every object continues in a state of rest or uniform motion in a straight line
unless it 1s acted on by a resultant external force.

2 The acceleration of an object is proportional to, and in the same direction as,
the resultant of the forces acting on the object.

F is the resultant force.
m is the mass of the

object. '—F — ma
ais the acceleration.
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Forces and Newton’s laws of motion

T) Historical \

note

|saac Newton was
born in Lincolnshire
in 1642. He was not an
outstanding scholar
either as a schoolboy
or as a university
student, yet later in life
he made remarkable
contributions in
dynamics, optics,
astronomy, chemistry,
music theory and
theology. He became
Member of Parliament
for Cambridge
University and later
Warden of the Royal
Mint. His tomb in
Westminster Abbey
reads ‘Let mortals
rejoice that there
existed such and so
great an ornament to

@ Human Race’.

Notice that this is a vector equation, since both the magnitudes and directions
of the resultant force and the acceleration are involved. If the motion is along a
straight line it is often written in scalar form as F = ma.

3 When one object exerts a force on another there is always a reaction, which
is equal and opposite in direction to the acting force.

Equation of motion

The equation resulting from Newton’s second law is often described as an
equation of motion, as in the following examples.

An empty bottle of mass 0.5 kg is released from a s
acceleration of 0.75ms 2. The water causes a £&si

marine and rises with an

(i) Draw a diagram showing the forces
direction of its acceleration.

(1)) Write down the equation o

(iii) Find the size of the buoyan:

Solution

(i) The forces
diagra

ottle and the acceleration are shown in this

"

ing on t

" The acceleration is shown with a
Ol 4—different type of arrow. A double
arrow is often used.

The weight is always

Water resistance shown as mg for moving bodies.

Figure 3.9
(1)) The resultant force acting on the bottle is (B—0.5¢ — 1.1) upwards.

The resulting equation
B—-0.5¢-1.1=0.54a
is called the equation of motion.
(iii) B—4.9—-1.1 = 0.375 ¢
B = 6.375

0.5 X 0.75

The buoyancy force on the bottle is 6.4 N.



Resultant=500-R —— > jpn

Resultant=500-B8 ———) - i is also constant and you

A car of mass 900 kg travels at a constant speed of 20ms ™! along a straight
horizontal road. Its engine is producing a driving force of 500 N.

(i) What is the resistance to its motion?

Later the driving force is removed and the car is brought to rest in a
time of 5s with the same resistance to motion.

(i1) Find the force created by the brakes, assuming it to be constant.

Solution

(1) The car is travelling at constant speed, so that the resultant force acting
on the car 1s zero.

Figure 3.10
Let the resistive force be RIN.
500-R =0

R =500
ce 15 500 N.

The resistive

So you expect a to be
negative.

(1) The car jgslowinggdown. <

B is constant, so that a

can use the constant
acceleration formulae.

The equation of motion is —B — 500 = 900a @

0=20+aX5 ¢ Use v = u + at with

4= —4ms2 u=20,v=0andt=>5.
Substituting in () =B — 500 = 900 x —4

= B=3100N

The braking force is 3100 N.

uoljow pue saduo4 ¢ Jaydey)
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- Forces and Newton’s laws of motion

Example 3.4 Two boxes A and B are descending vertically supported by a parachute. Box A
has mass 100kg. Box B has mass 75kg and is suspended from box A by a light

vertical wire. Both boxes are descending with acceleration 3ms™.
(1) Draw a labelled diagram showing all the forces acting on box A and
another diagram showing all the forces acting on box B.
(i) Write down separate equations of motion for box A and for box B.
(i11) Find the tensions in both wires.
Solution
|
(1) T,
Tn

Figure 3.12

3ms 2

.
2 759
00g

Figure 3.13 Acceleratioh,dow rds.

T is the tension in the
blue wire linking A to Bo
the parachute. T is the
tension in the green

wire linking A to B, 59~ T, =225 @ ¢—— Since 75a =75 X 3 = 225
I=T m @) T, =75x 9.8 - 225

300 ) ¢— Since 100a = 100 x 3 = 300

he resultant downwards force is 75¢ — T, so the equation of

- - =510N

Discussion

ls the level of 4 Substituting in M: T, = 510 + 100 X 9.8 — 300
given in these ansv = 1190N

justified?
The tension in the blue wire linking A to the parachute is 1365 N.
The tension in the green wire linking A to B is 510 N.

® (il of mass 15kg
(il  ofmass 10g

(1) Find the accelerations produced when a force of 100N acts on an object

(il of mass 1 tonne.

(@ A bullet of mass 20 g is fired into a wall with a velocity of 400ms™'. The
bullet penetrates the wall to a depth of 10 cm. Find the resistance of the
wall, assuming it to be uniform.



(® A car of mass 1200kg is travelling along a straight level road.

(il Calculate the acceleration of the car when a resultant force of 2400 N
acts on it in the direction of its motion. How long does it take the car
to increase its speed from 4ms™' to 12ms™'?

The car has an acceleration of 1.2ms™* when there is a driving force of
2400 N.
(il Find the resistance to motion of the car.

@ A load of mass 5kg is held on the end of a string. Calculate the tension in
the string when

(i)  the load is raised with an acceleration of 2.5ms™>

2

(i) the load is lowered with an acceleration of 2.5ms”

(iii) the load is raised with a constant speed of 2ms”

(iv) the load is raised with a deceleration of 2.5ms™>
(B A block A of mass 10kg is connected to

a
block B of mass 5kg by a light inextensib
string passing over a smooth fixed pulley.
blocks are released from rest with A 08m

above ground level, as shown in F

(i)  Find the acceleration of the s
the tension in the stri

(il Find the speed of theimasses when A hits
the ground.

rise after A hits the floor
omes slack?

of mass 4kg, which

ly over smooth pulleys )

at dge of the table. Figure 3.15
Draw force diagrams to show the forces acting on each mass.

(il  Write down separate equations of motion for A, B and C.

i) Find the acceleration of the system and the tensions in the strings.

@ A truck of mass 1250kg is towing a trailer of mass 350 kg along a horizontal
straight road. The engine of the truck produces a driving force of 2500 N.
The truck is subjected to a resistance of 250 N and the trailer to a resistance

of 300 N.
T T
= SR

Figure 3.16

(i) Show, in separate diagrams, the horizontal forces acting on the truck
and the trailer.

(il Find the acceleration of the truck and trailer.

i) Find the tension in the coupling between the truck and the trailer.

uoljow pue saduo4 ¢ Jaydey)
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Working in vectors

A train consists of a locomotive and five trucks with masses and resistances
to motion as shown in Figure 3.17.The engine provides a driving force of
29000 N. All the couplings are light, rigid and horizontal.

100N 100N 100N 100N 100N 500N
Q0N

<
.I.. - — I".. — I".. .I.. - — I"..
o ° 5 ° 5 ° O ° 5 °

Figure 3.17

()  Show that the acceleration of the train is 0.2ms™2.
(il Find the force in the coupling between the last two trucks.

With the driving force removed, brakes are applied, so adding additional
resistances of 3000 N to the locomotive and 2000 N to each truck.

i) Find the new acceleration of the train.
(iv) Find the force in the coupling betwee la§t two trucks.

(® Block A of mass 2kg is connected to a i
scale pan by a light inextensible strin asses
over a smooth fixed pulley.

The scale pan holds two blocks asses

(i) the es acting
(ii) tion for each of

(iii)

ing, the reaction force
and the reaction between C

2]

C

andithe scale pan.

Figure 3.18

rking in vectors

force 1s a physical quantity that causes a change of motion. A force can start
motion of an object, stop its motion, make it move faster or slower, or
change the direction of its motion. By its very nature, a force is a vector quantity
just like displacement, velocity or acceleration. It has magnitude and direction,
unlike scalar quantities such as distance, speed, mass or time, which have
magnitude only.

A
Figure 3.19

Notation and representation
A vector can be represented by a directed line segment in a diagram.

In writing, AB represents the vector with magnitude. The
magnitude can also be written as |ABI- The direction is given
by the angle @ which AB makes with a fixed direction, often the
77777777777777777777 horizontal.

In Figure 3.20, F is a vector with magnitude F = |F|and
Figure 3.20 direction ¢.
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Figure 3.22

Figure 3.24

F <€—

<F

Figure 3.26

Vectors are often written using lowercase letters, like a, b
. —_—

and c. It is common to use a for the vector OA where O A

is the origin.

To determine the direction of a vector in the xy plane,
a mathematical convention is used. Starting from the

- - - iy 0
x-axis, angles measured anticlockwise are positive and

angles in a clockwise direction are negative. Figure 3.21

In the example shown in Figure 3.22, P has direction +75° and Q has
direction —130°.

Adding vectors

One way to add vectors is to draw
them one after another, i.e. where one
finishes the next one starts.

—_— = —
AB + BC = AC

Alternatively, you can make a and b
start at the same place and take the
diagonal of the ensuing parallelogram.

This gives the same result, beca@ise oppo des of a parallelogram are
equal and in the same direction, so that'h is repeated at the top right of the
parallelogram in Figure

force is a vectoryghe resultant is a vector starting at the start point of the first

force a ing e end point of the last force.
F
F1
Fq Fs
F
=
Fs
R
F3

Figure 3.25
R=F +F, +F +F,
The resultant R of the four forces (F,, F,, F, and F,) can be found by drawing

consecutive lines representing the vectors. The line which completes the
polygon is the resultant.

You have met the contact forces of normal reaction R and frictional force F.
The resultant of them is the fotal contact force with magnitude VF>+ R” .

uoljow pue saduo4 ¢ Jaydey)
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Working in vectors

6
5 -
J
4
3
(e
2 a 3
1
4
0 >
6o 1 2 3 4
Figure 3.27

Example 3.5

Components of a vector

Finding components is the reverse process of adding two vectors. It involves
splitting a vector into two perpendicular components.

The result is often described using unit vectors i and j along the x and y axes
respectively. The vector a in Figure 3.27 may be written as a = 4i + 3j.

Alternatively, a can be written as the column vector (‘;J

In general if i and j are unit vectors along

the x and y directions respectively then a a p
can be written in terms of components as jT !

a=aji+ajorin column vector form i a,

Figure3.28
j— ax
(2]
- . aX
a=ail-+ aj= [ay]
The four vectors a,b, c and d shownyin‘the diagram.
10
9
8 d
7 c
6
5
4
; Lo
) 27 |\

2 3 4 5 6 7 8 910
.29

(i) Write them in component form and as column vectors.

(i) Draw a diagram to show the vectors 2a,—b and 2a — b and write these
in both forms.

Solution
(@) a=3i+2j=(§], b=—i+4j=(_41), c=—2i—2j=[jj,

w



(i) 6
5
4
3 2a \_
2
1 >
0 2-p
0O 1 2 3 45 6 7 8 9 10

Figure 3.30

2a = 2(3i + 2j) = 6i + 4j = (jj

—b=—(—i+4j)=i—4j=( 1]

uoljow pue saduo4 ¢ Jaydey)

—4
2a—b=2a+(-b)=6i+4+i-4 = .
Position vectors
To specify the position of an object, ya s displacement relative to a
fixed origin. a and b are usuall to'define’the position vectors of A and B.
_ - _ — .
a=0A,b=0B | The vector betwegn tw s
AB=AO+0B
. —» The displacement be replaced by the displacement from A to O
AB=-a+b followed by thatdrom O"te,B.
=b-a

a
Given a vector a =( x]
a
Y

at an angle of @ with the
x axis, then
e |Ifa_is positive then

a
Y

a

9

0= arctan

e |Ifa_is negative and

is positive then Figure 3.31
6=arctan ZY J +180 Any displacement vector AB can be written in terms of the position vectors of
(orin radiansxthis its two end points.
is K +1t) . . .
a, The magnitude and direction of
* Ifa,is negative and vectors written in component form a .

a is negative then . —
Y . The magnitude of a vector is just its length and

a
@=arctan| ” |—=180 | can be found by using Pythagoras’ theorem.

a 2 2 4 I_
(or in radians this a=4a,  ta, a,

is| 4 |- ). The direction is related to the angle the vector Figure 3.32

a, makes with the positive x-axis.
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Working in vectors

b4

or 6 = arctan (Z—J + 180°, depending on which quadrant a is in.

X

Example 3.6

Find the magnitude and direction of each of the four vectors

a= (S}b - [_ilc =-2i~2jandd = 3i -}

Solution

3
(3
2
Magnitude |a‘ =3 +2°=13=3

Direction 6 = arctan(g) = 235.7°

B

Figure 3.34

Figure 3.35
Magnitude ‘c| = \/m =/8=283
tan@ = % =1= ¢ =arctan1 =45°

Direction 6 = —(180°— 45°) = —135°

d=3i-j

Figure 3.36



Magnitude |d| = {32+ (-1)° = V10 = 3.16

Direction @ = — arctan (%) =-—18.4°

Finding unit vectors along given directions
Ifa=aj+a j, the magnitude of a is[a| = Ja,’+ a,’ . A unit vector along a
(denoted by a) has magnitude 1. a is parallel to a but has a magnitude which is

scaled by the factor ﬁ
a

. + ay
i
lal \/axz +a,’ \/axz +a,’
Example 3.7 (i) Find a unit vector along a = 3.51 — 1

(1)) Find a vector along a which is

j=2 9y

uoljow pue saduo4 ¢ Jaydey)

Solution

= /12.25 + 144

(i) The magnitude of a igfa| =

A unit vec aisa=-—22i— 2 j=0.28i - 0.96]

125"~ 1257
(i1) a has de 1, s8 you are looking for a vector along a which is
25 un g, i.e.25a = 25(0.281 — 0.96j) = 7i —24j

a force into components in two perpendicular

raw the vector F, magnitude F, making an angle 6 with the x-axis, taken as

e i direction. Make up the right-angled triangle with F along the hypotenuse
and the x and y components along the other two sides. These are then
evaluated using trigonometry. This process is called resolving F into its x and y

components.
Fsiné
Figure 3.37
Fcos 0
F=Fcos6i+ Fsin0j=
Fsm 0
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Working in vectors

Example 3.8 Resolve a weight I/ N in two directions which are along and at right angles

to a slope making an angle 6 with the horizontal.

Solution

N and 15N in the directions shown

Example 3.9 Two forces P and Q ha

in Figure 3.39.

on

Note
P=10cos 30°i+
10 sin 30° j
=8.66i+5j

Note
Q=-15cos45°i+ | 7 NN p
15 sin 45°j
=-10.61i+10.61]j

Figure 3.40 Figure 3.41

The resultant is P + Q = (8.66i + 5j) + (—10.61i + 10.61j)
=-1.95i + 15.61j

58



It is shown in Figure 3.41.
The magnitude of the resultant is |P + Q| = J(=1.95)* +15.61° =15.73

The direction of the resultant:

anp =220 = ¢ = arctan(8.01) = 82.9°

0 =180° — 82.9° = 97.1°

The resultant force P + Q has magnitude 15.7 and direction 97.1° relative
to the positive x-axis.

(D Four vectors are given in component form by a = 3ig+ 4j, b = 6i — 7j,
c=-2i+5jand d = -5i — 3j.
Find the vectors
il a+b il b+c i) c+
vy a+b+d v a—b vi d—=b +c¢

(@ A, B, C are the points (1,2), (5, 1) z
() Write down in terms of i an

points.

. - — — —
(il  Find the component form of the displacements AB, BC and CA.

(i) Draw a diagram to show, the position vectors of A, B and C and your

(1 -1 3
= (1} b= [ 2] and ¢ = (_4].
R is the nt of the displacement 2a — 3b + ¢ and (1,-2) is the
ing pomngaWhat is the position vector of R?

uoljow pue saduo4 ¢ Jaydey)

osition vectors of these three

(® Three vect

sta:

enitude and direction of the following vectors.
1—5j i) 71 + 24j i) = +j
4 v 2i-3j vi) =i —2j

Write down the following vectors in component form in terms of i and j.

6N

40°

60°

3N 29N

Figure 3.42
59



Working in vectors

(® (i) Find a unit vector in the direction of(;(ij.

A force F acts in the direction of (;2) and has magnitude 39 N.

(il Use your answer to part (i) to write F in component form.

Find the vector with magnitude 8.2 that is parallel to the vector 40i — 9j.

® Q

Write down each of the following vectors in terms of i and j. Find the
resultant of each set of vectors in terms of'i and j.

Figure 3.43
(® The displacement of Bffom A is e dlsplacement of C from A is
( 3] The displacementiof D from A 1 1s .
Draw a dia showing the relative posmon of A, B, C and D. Find
— — — —
il DB lil DC liil CB livy BC

Threé vectofs a, b and ¢ are represented by the sides of a triangle ABC, as
shown igure 3.44.

A

B

Figure 3.44
The angle Cis fand |a|, |b| and |c| are g, b and ¢. Answer each part in
terms of 0, a, b and c.

[l Write a and b in terms of i and j.
(i) Finda + b and hence |a + b|%

(i) Use your answer to part (i} to express ¢* in terms of a, b and 6.

60



3 Forces in equilibrium

When forces are in equilibrium their vector sum is zero and the sum of the
resolved parts in any direction is zero.

Example 3.10 A brick of mass 5kg is at rest on a rough plane inclined at an angle of 35° to

the horizontal. Find the frictional force FN, and the normal reaction RIN of
the plane on the brick.

uoljow pue saduo4 ¢ Jaydey)

Solution
The diagram shows the forces acting on the brick.
Aents of weight
5g sin 35°
. 5g cos 35°
59

Figure 3.45
Take unit vecto j parallel and perpendicular to the plane, as shown.
Since the is in equilibrium, the resultant of the three forces acting on it

1s zero. // 5¢ = 49

Res i direction: F—495in35°=0 @
F=28.10 ...
olviflg in the j direction: R —49 cos35°=0 (@
R =40.13 ...

ritten in vector form this is equivalent to

Fi+ Rj —49 sin35°1 — 49 cos35°% = 0 Noticathatiboth
or, alternatively, of these vector
—495in 35° equations
E + 0 + S = 0 / lead to the
0 R —49 cos 35° 0 equations (D
and (2) above.

The triangle of forces

When there are only three (non-parallel) forces acting and they are in
equilibrium, the polygon of forces becomes a closed triangle, as shown for the
brick on the plane in Figures 3.46 and 3.47.
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Forces in equilibrium

The triangle is closed
because the resultant
is zero.

When a body is in
equilibrium under the
action of three non-
parallel forces, then

(i) the forces can be
represented in
magnitude and
direction by the
sides of a triangle

lii) the lines of action
of the forces pass
through the same
point. They are
concurrent.

Example 3.11

62

R
F
i DY
N
59

Figure 3.46

F
Then 5g

F =49c0s55° =

And similarly R i

When more than three for
but the triangle is then a p

The next example allustrates t ethods for solving problems involving forces
in equilibrium. xperience, you will find it easier to judge which method is

Figure 3.48

Solution

The force diagram for this situation is given below.

109

Figure 3.49



Discussion point

In what order would you
draw the three lines in
this triangle of forces
diagram?

Method 1: Resolving forces
Vertically (T): T, sin20° + T, sin40° = 10g=0 @
0.342...T, + 0.642...T, = 98

Horizontally (—): =T, c0s20° + T, cos40° = 0 ®
~0.939...T, + 0.766...T, = 0

The set of simultaneous equations is solved in the usual way. Whether you
are using the equation solver on your calculator or working it out on paper,
it is important that you keep as much accuracy as possible by substituting for
the different sines and cosines only at the very end of the calculation.

Multiply ) by cos 20° and then add (2) X sin 20° ay recognise that
Sis the compound angle
for sin (40° + 20°) and

e same as sin 60°.

to give

T, (sin 40° cos 20° + cos40°sin 20°) = 98 cos 20°

Substituting back in (2) now

rces are in equilibrium they
ed by the sides of a triangle

109 Y

B
Figure 3.50

You can estimate the tensions by measurements. This will tell you that
T,~87and T, ~ 106 in newtons.

Alternatively, you can use the sine rule to calculate T, and T, accurately.

In triangle ABC, CAB = 70° and ABC = 50°, so BCA = 60°.

So Lo _ T, _ 98
sin50°  sin70°  sin60° 180° - 70° - 50° = 60°
2 o _ 98sin50° _ 98sin70°
gving = gy A T =

As before the tensions are found to be 87N and 106 N.

uoljow pue saduo4 ¢ Jaydey)
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Forces in equilibrium

/Discussion point F, 3 )
Lami’s theorem states that when three forces o
acting at a point as shown in the diagram are
in equilibrium then

F_f _F g v
sina ~ sin siny’
Sketch a triangle of forces and say how the
angles in the triangle are related to o, fand
7. Hence explain why Lami’s theorem is true.
Fi
Figure 3.51

N\ <
m Two husky dogs are pulling a sledge. The exert forces of 60N but at

different angles to the line of the sled n in the diagram. The sledge
is moving straight forwards.

60 N
jT _______ ET—
1
T
60 N
Figure 3.52
(1) solve the two forces into components parallel and perpendicular to

ife of the sledge.

in overall forward force from the dogs and the overall sideways

(

The resistance to motion is 20 N along the line of the sledge and up to

400N perpendicular to it.

(1)  Find the magnitude and direction of the overall horizontal force on
the sledge.

(iv)  How much force is lost due to the dogs not pulling straight forwards?

Solution

6 Taking unit vectors i along the line of the sledge and j perpendicular
to the line of the sledge.

The forces exerted by the two dogs are
60cos15°1 + 60sin15°]

=57.95...1i +15.52...j

and 60 cos10°1 — 60 sin10°j
=59.08...1—10.41...j



(i)  The overall forward force is equal to

60cos15° + 60cos10° =117.04... = 117N

The overall sideways force is equal to

60sin15° — 60sin10° = 5.11... =5.1N

(1)  The sideways force is cancelled by the resistance force opposing it.

The forward force is reduced by an amount 20N from the resistance
to motion.

So that the overall forward force is 97 N and the overall sideways
force is 0.

The magnitude of the overall force on the sledge is thus 97 N in

the direction of motion.

uoljow pue saduo4 ¢ Jaydey)

(iv)  If the dogs were pulling straight, the
be 100N, so the amount of force le o the dogs not pulling

straight is thus 3 IN. 60, - 20 (60N from

100 - 97.04.. the resistance)

The tension in the string
is the same on either
side of the pulley. This is
a consequence of there
being no friction between
the pulley and the axle,
and the pulley having no
mass. The string does
not slide over the pu

but moves with it.

olution

When P is about to slide up the
slope, the situation is as shown

in Figure 3.54 where the tension
in the string is T'N and the normal
reaction of the plane on P is N N.

The equilibrium of Q = T = 4g.

Figure 3.54
Resolving up the plane for P = T = uN + mgsin 30°

Resolving perpendicular to the plane for P = N = mgcos30°.
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- Forces in equilibrium
J3 1 8—m.

Thus 4g=,umg7 +* mg= = ‘U:E

Figure 3.55 shows the situation when P
1s about to slide down the slope. The
tension in the string is now T“N.

The block Q = T'=g.

Resolving up the plane for
P= T + uN’= mgsin30°. Figure 3.55

Resolving perpendicular to the plane for P = N’= mgcos30°.

Thusg+ymg£ = mg2 = U=

Equating 4¢ = ,umgi s mg2

andsom—5:>,u—T

\/_—
H= \/——
_m=2
:>/,L—\/3m
>m-2=8—m,
20

ERGl=ERRS (1) The followi

() each case

ets of forces are in equilibrium. Find the value of p and ¢ in

(i)

5
;3 A brick of mass 2kg is resting on a rough plane inclined at 40° to the
horizontal.
[l Draw a diagram showing all the forces acting on the brick.
(il Find the normal reaction of the plane on the brick.
(il Find the frictional force acting on the brick.

(@ A particle is in equilibrium under the three forces
shown in Figure 3.56. Find the magnitude of the ¢
force F and the angle 6.

3N
Figure 3.56

() A box of mass 10kg is at rest on a horizontal floor.
(i) Find the value of the normal reaction of the floor on the box.

The box remains at rest on the floor when a force of 30N is applied to it at
an angle of 25° to the upward vertical as shown in Figure 3.57.
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: 30N

10 kg

Figure 3.57
() Draw a diagram showing all the forces acting on the box.

(il Calculate the new value of the normal reaction of the floor on the box
and also the frictional force.

(B A block of weight 100N is on a rough plane
that is inclined at 30° to the horizontal. The
block is in equilibrium with a force of 35N
acting on it, in the direction of the plane as 30°
shown in Figure 3.58. 58

35N

Calculate the frictional force acting on the b

@ horizontal ground by a

e tension in the rope is 60 N
e ground is 35N.The crate

uoljow pue saduo4 ¢ Jaydey)

(® A crate of mass 10kg is being pulled acré
rope making an angle 0 with the hori

is in equilibrium.
() Draw a labelled diagr w1 he forces acting on the crate.
(il  Find the angle 6.

(iii) en the floor and the crate.

Find the nor reactl

@

Figure 3.59

A block of mass 10kg rests in equilibrium on a
smooth plane inclined at 30° to the horizontal. It is
held by a light string making an angle of 15° with
the line of greatest slope of the plane.

() Draw a labelled diagram showing all the forces
acting on the block.

Figure 3.60

(il Find the tension in the string and the normal
reaction of the plane on the block.
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Forces in equilibrium

(® A particle A of mass 3kg is at rest in equilibrium on horizontal rough

ground. A is attached to two light, inextensible strings making angles of 20°
and 50° with the vertical. The tensions in the two strings are 10N and 20N,
as shown in Figure 3.61.

10N
20N

Figure 3.61
() Draw a diagram showing all the forces acting on A.
(il Find the normal reaction between the ground and A.

(i) Find the magnitude of the frictional force, 1
which it is acting.

icating the direction in

Four wires, all of them horizontal, are attache
pole as shown in this plan view. There 4 erall

tensions in the wires are as shown.
40 N

top of a telegraph
e on the pole and

75N

Figure8:62

(i) perpendicular directions as shown in the diagram, show that the
75N may be written as (25.71 — 70.5j) N (to 3 s.f.).

in both component form and magnitude and direction form.

esultant force on the pole and find its magnitude and direction.

A ship is being towed by two tugs. They exert forces on the ship as
indicated.

There is also a drag force on the ship.

Figure 3.63

(il Write down the components of the tensions in the towing cables along
and perpendicular to the line of motion, [, of the ship.

(il There is no resultant force perpendicular to the line /. Find T.

il The ship is travelling with constant velocity along the line /. Find the
magnitude of the drag force acting on it.



The diagram shows a block of mass 10k
® g g /@

on a rough inclined plane. The block 1s
attached to a 7kg weight by a light string
which passes over a smooth pulley; it is @

on the point of sliding up the slope.

() Draw a diagram showing the =~ <---- e

forces acting on the block. Figure 3.64
il Resolve these forces into components parallel and perpendicular to the slope.
il Find the force of resistance to the block’s motion.
The 7 kg mass is replaced by one of mass mkg.

(iv) Find the value of m tor which the block is on the point of sliding down
the slope, assuming the resistance to motion is the same as before.

@ A block of mass 75kg is in equilibrium on smooth h@rizontal ground with

one end of a light string attached to its upper

string passes over a

uoljow pue saduo4 ¢ Jaydey)

Figure 3.65

(il Find@ relationship between T, the tension in the string, and R, the
nor ction between the block and the ground.

Th is onythe point of lifting oft the ground.

d m.

inding resultant forces

hen forces are in equilibrium their resultant is zero, however forces are not
always in equilibrium. The next example shows you how to find the resultant
of forces that are not in equilibrium.You know from Newton’s second law that
the acceleration of the body will be in the same direction as the resultant force;
remember that force and acceleration are both vector quantities.

Example 3.14 A sledge is being pulled up a smooth slope inclined at an angle of 15° to the

horizontal by a rope which makes an angle of 30° with the slope. The mass
of the sledge is 5kg and the tension in the rope is 40 N.

(1) Draw a diagram to show the forces acting on the sledge.
(i)  Find the resultant of these forces.

(1)  Find the acceleration of the sledge.
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Finding resultant forces

When the sledge is
modelled as a particle,
all the forces can be
assumed to be acting at
a point.

There is no friction
force because the slope
is smooth.

Notice that although
the sledge is moving up
the slope this does not
mean that the resultant
force is up the slope. Its
direction depends on
the acceleration of the
sledge which may be
up or down the slope,
or zero if the sledge

is moving at constant
speed.

/Discussion point
Try resolving

horizontally and
vertically. You wil

possible to solve these
equations, but is quite a
lot of work. How can you
decide which directions
will be easiest to work

with?

SOlUtlon R T tension
(1) Figure 3.66 shows the force el
diagram. reaction
(i)  Method 1
Resolve the forces into *
components parallel and S gt
perpendicular to the slope. Figure 3.66
Components of the weight Components of the tension
40 40 sin 30°
5gsin 15°
J5" 40 cos30°
59 5g cos 15°
Figure 3.67

(ii)

Resolve parallel to the slo

The resultant is F, cos

€ slope:N

R =5¢¢0s 15° — 40sin 30° = 27.33
To nificant figures, the normal
eaction,is 27.3 N and the resultant is

up the slope.
ethod 2

sin30° — 5¢cos15° =0 &———

/ The force R is
gsin15° perpendicular to

the slope so it has
no component in
this direction.

There is no
resultant in

this direction
because the
motion is parallel
to the slope.

Alternatively, you could have worked in column vectors as follows.

Parallel to slope

< .

0, [40c0s30°) —5gsin15° ) (F
R 405in 30° —5gcos15° 0
%

Perpendicular to slope

Normal

.+ Tension + Weight = Resultant
reaction

Once you know the resultant force you can work
of the sledge using Newton’s second law.

F = ma
21.959... = 54
a=210% 2 4300

The acceleration is 4.4ms 2 (correct to 1 d.p.)

out the acceleration




An alternative way of approaching the previous
example is to draw a scale diagram with the
three forces represented by three of the sides of a

The resultant force is in the
direction of motion and so
must be parallel to the slope

quadrilateral taken in order (with the arrows following
— — —

each other, AB, BC and CD) as shown in Figure 3.68.

The resultant is represented by the fourth side AD.

mg=49Y
From the diagram you can estimate the normal

reaction to be about 30N and the resultant 20 IN.

Discussion point
Scale

I I
0 10 20

In what order would you draw the lines in the diagram?

Figure 3.68

uoljow pue saduo4 ¢ Jaydey)

/Discussion point
What can you say about the accelerati

the cases when
(i) the length AD in Figure

the quadrilateral is the

(iii) BC is so shortfat the poi
shown in Fi 697

Figure 3.69

Example 3.15

o forces P and Q act at a point O on a particle of mass 2kg. Force P has
magnitude 50N and acts along a bearing of 030°. Force Q has magnitude of
30N and acts along a bearing of 315°.

(1) Find the magnitude and bearing of the resultant force P + Q.

(1) Find the acceleration of the particle.

Solution

(i) Forces P and Q are illustrated below.

Note p

Notice that P and Q are N Q
written as vectors. 50 N 30N

45°
30°

60° 45°
0 0

Figure 3.70
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Finding resultant forces

50 sin 60°

_ 25
43.30...

—30cos45°
30sin 45°

50 cos60°J
P=

P+Q

(=22t [ g

| 21.21..

P+Q= 25 " —21.21...
43.30... 21.21...

_(378... :
T

eration of the particle is given by

_1(378...)_(189
yQ)= 2 (64.51...]_[32.3]

Figure 3.72

The magnitude of the acceleration is /1.89° +32.3° =32.4.

s 1.89) _ o
The bearing is arctan (m) =3.35°.
P and Q give the particle an acceleration of 32.3ms 2 on a bearing

of 003°.

Sometimes, as in the next example, it is just as easy to work with the
trigonometry of the diagram as with the components of the forces.



Example 3.16 The angle between the lines of action of two forces X and Y is 6. Find the

magnitude and direction of the resultant.

Solution
v 2
m
=
D
=
w
’ Y
> X "
D
Figure 3.73 3
Use the cosine rule in triangle ABC. The magnitude ofithe resultant is E 2
2 2 3
F =|X+Y|=/AB> + BC’ - 2AB X BC X cos o
g.

= JX?+Y? = 2XY cos(180° - 6)

=\/X2+Y2+2XY cos 6

Use the sine rule in triangle e nt makes an angle ¢ with the
X force.

sinCAB _ sinABC
BC

ant of the two forces X and Y inclined at 8 has magnitude

Y?+2XYcos 6 and makes an angle arcsin(% sin 0) with the X force.
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Finding resultant forces

For questions 1-06, carry out the following steps. All forces are in newtons.

(il Draw a scale diagram to show the forces and their resultant.

(il State whether you think the forces are in equilibrium and, if not, estimate
the magnitude and direction of the resultant.

(i) Write the forces in component form, using the directions indicated and
so obtain the components of the resultant. Hence find the magnitude and
direction of the resultant.

(i) Compare your answers to parts (ii) and (iii).

0] @)

40°
4N T
3N <———F—> 6N
i

22N

4N

20° 55°

Y
30N
6N

8N
Figure 3.74

(@ Four horizontal wires are attached to a telephone post and exert the
following tensions on it: 25 N in the north direction, 30 N in the east
direction, 45 N in the north-west direction and 50N in the south-west
direction. Calculate the resultant tension on the post and find its direction.



Forces of magnitude 7N, 10N and 15N act on a particle of mass 1.5kg in
the directions shown in Figure 3.75.
15N

Figure 3.75

lil  Find the components of the resultant of the three forces in the i and j
directions.

lil  Find the magnitude and direction of the resulta
liil  Find the acceleration of the particle.

(® (i) Find the resultant of the set of 6 forces whose itudes and
directions are shown in Figure 3.76.

4N
A

N
3N

60°

2N
1N

rest at O.

6N
igure 3.76
forees are acting on a particle P of mass 5kg which is initially at
)

How fast is P moving after 3s and how far from O is it now?

The resultant of two forces P and Q acting on a particle has magnitude
P = |P|.The resultant of the two forces 3P and 2Q acting in the same
directions as before has magnitude 2P. Find the magnitude of Q and the
angle between P and Q.
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Finding resultant forces

KEY POINTS

1 There are many different types of force, including gravity, tension, thrust,
driving force and friction.
2 Newton'’s laws of motion
® Everyobject continues in a state of rest or uniform motion in a straight line
unless it is acted on by an external force.
® Resultant force = mass x acceleration or F = ma
® When one object exerts a force on another there is always a reaction force
which is equal and opposite in direction, to the acting force.
3 Vector quantities (like force) can be added to find their resultant, resolved into
components, and their magnitude and direction can be calculated.

4 Relationships between the variables describing motion

Position Velocity Acceleration
R o differentiate —>
i s dr . dv_d’r .
r=x1-+ =—= S==L= =
x1+7y] v F v 1+ a 1 aita, ]
dv,
(x 2z dt _ x
U do, | Y
dt

The magnitude of any
vector, say p, is denoted

by p or |p| This is given Distance from O Magnitude of acceleration
by 2+ Jx2+y? JE+7
pP=4ps +p,+p: and so

p’=pit P)zf +pl=p.p- Acceleratio Velocity Position

integrate —_—

In this case v.v = v* and
u.u = 1’
w v=J‘adt r=Jvdt
a v
vV = * dt I'=J‘( xjdt
a, v,

2as(r—rn)=v>—u’

6 Force is a vector. It may be represented in either magnitude-direction form or
in component form

Figure 3.77



- a,x . . . FX
G|venavectora=[a J W:ltude of F =|F|=F}+F; F=Fx1+Fy_]=[F]
Y Y
ali @l erle of Pty di Direction of F = §=arctan 5
x axis, then _ E,
e If a_is positive then 7 Resolving forces ()]
a 5
f@=arctan| ' £ °
a, Fsing i
* Ifa isnegativeanda, W
is positive then 0 T
p o
f#=arctan| ' |+180 Fcosf 5
2 Figure 3.78 )
(or in radians this g
W . . . |[Fcoso =3
is + ) F= Fcosbi+ Fsin0j= : 3
a, Fsin 6 o
~
e |Ifa_is negative and o
a,is negative then 8 Resultant forces =
@ R=F+G+H=| Gl He
e:arctan[Y]—mo SERSTEEE G [T
a Z
(or in radians this R=[§J;X=FX+GX+ H, Y=F,
a
is| ' |—=m). . . Y
a Magnitude of R =/ X*+ Direction of R=9= arctan(x)
9 Equilibrium

When the resulta
10 Triangle of for

If an objectd m under three non-parallel forces, their lines of
action aré con ent and they can be represented by a triangle.

N!G OUTCOMES
ra

s zero, the forces are in equilibrium.

ave finished this chapter, you should be able to:
w a diagram showing the forces acting on a body

apply Newton’s laws of motion to problems in one or more dimensions

resolve a force into components having selected suitable directions for
resolution

» find the resultant of several concurrent forces

> realise that a particle is in equilibrium under a set of concurrent forces if and
only if the resultant is zero

> know that a closed polygon may be drawn to represent the forces acting on a
particle in equilibrium
» formulate equations for equilibrium by resolving forces in suitable directions

» formulate the equation of motion of a particle which is being acted on by
several forces

> know that contact between two surfaces is lost when the normal reaction
force becomes zero

» work with vectors in two dimensions.
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i model for friction

A gem cannot be
polished without friction,
nor a man perfected
without trials

Lucius Annaeus S neca |

Figure 4.1 When an accident involving a collision happens, skid marks are sometimes left
on the roadway by a vehicle that has locked its brakes. By measuring the skid marks and
applying mechanics, it is possible to estimate the speed of the vehicle, prior to collision.

Discussion point

In the situation illustrated in Figure 4.1, the red car left a 10 metre skid mark on the
road. The driver of the car claimed that this showed he was driving within the speed
limit of 30 mph.

It is the duty of a court to decide whether the driver of the red car was innocent or
guilty. Is it possible to deduce his speed from the skid mark? Draw a sketch map
and make a list of the important factors that you would need to consider when
modelling this situation.




. : :
Discussion point

How good is this model
and would you be
confident in offering the
answer as evidence in
your defence in court?
Look carefully at the
three assumptions.
What effect do they
have on the estimate of

the initial speed?

1 A model for friction

Clearly the key information about the accident involving the red car is provided
by the skid marks. To interpret it, you need a model for how friction works; in
this case between the car’s tyres and the road.

As a result of experimental work, Coulomb formulated a model for friction
between two surfaces. The following laws are usually attributed to him.

1
2
3

5
6

According to Coulomb’s model,
values and ranges of values for

Friction always opposes relative motion between two surfaces in contact.
Friction is independent of the relative speed of the surfaces.

The magnitude of the frictional force has a maximum which depends on the
normal reaction between the surfaces and on the roughness of the surfaces in
contact.

If there is no sliding between the surfaces

F < uR
where F is the force due to friction and R is
the coefficient of friction.

When sliding is just about to occur,
When sliding occurs F = uR.

ormal reaction. u is called

aid to be limiting and F = uR.

or any pair of surfaces. Typical

e coeflictent of friction u are given in the table.

Surfaces in contact

Wood sliding on woo 0.2-0.6
Metal sliding on m 0.15-0.3
Normal tyres oafdry road 0.8

Racing tyres ‘on dryfroad 1.0

Sandpape aper 2.0

0.02

t was the driver of the red car going?

Youcan proceed with the problem. As an initial model, the driver of the red car

Taking the direction of travel as positive,
let the car and driver have acceleration
ams~? and mass mkg.You have probably
realised that the acceleration will

be negative. The forces (in N) and
acceleration are shown in Figure 4.2.

ade the following assumptions:

that the road was level
that his car was travelling at 2ms ! when it hit the orange car (this was
consistent with the damage to the cars)

that the car and driver could be treated as a particle, subject to Coulomb’s
laws of friction with u = 0.8 (i.e. dry

.. Direction of travel
road conditions). R —

2

ams™

Figure 4.2

NS

uolldLly J0j japow ¥ ¥ Jaydeys
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Modelling with friction

Apply Newton’s second law:
There is no vertical

perpendicular to the road R — mg = Ok acceleration

parallel to the road —uR = ma @) _
\ There is a constant force
Solving for a gives - UR = ma from friction
__BR_ pmgt
a=—" -=—— =—ug From @ R = myg

Taking 4 = 0.8 and ¢ = 9.8 ms? gives a = —7.84ms™>.

The constant acceleration formula

v’ =u’+2as

can be used to calculate the initial speed of the red car. Substituting s = 10, v =2
and a = —7.84 gives

. . .
Discussion point

. u=~/2>+2x7.84x10=12.68ms"
In this example the

brakes were locked. Convert this figure to miles per hour.
What happens when you 12.68 X 3600 4
slow down in normal Speed = 600 <

driving? Where does
friction act?

= 28 5mph

So the model suggests that the red
30 mph before skidding be

2 Modelli

Discussion point

In what direction is the
frictional force between

forces are essential in many ways. For example, a ladder leaning against
1d always slide if there were no friction between the foot of the ladder
ground. The absence of friction in icy conditions causes difficulties for

pad users: pedestrians slip over, cars and motorcycles skid.

Remember that friction always opposes sliding motion.

Example 4.1

A stone slides in a straight line across a frozen pond. It starts to move with
a speed of 8ms™ and slides for 40 m before coming to rest. Calculate the
coeflicient of friction between the stone and the pond.

Solution
1 a
u=8ms R I
F
I lmg |
: 40m !
Figure 4.3



The only force acting on the stone in the direction of motion is the frictional
force F, which is uniform, thus giving rise to a constant acceleration a. In
order to find a, use the constant acceleration formula

NS

— 2
i " Since the stone is in motion: F =R
0=8+2X40xa
a=-%-_p3

80
Use Newton’s second law to give

_tﬂ/- Vertical equilibrium means R = mg

—umg = —0.8m

0.8
=98 _ .0816...
H=9s

The coefficient of friction between the stone ans d is 0.082.

Example 4.2 A box of mass 2kg rests on rough hori und. The coefficient of

light inextensible string
If the tension in the string is
box is to accelerate when the

uolldLly J0j japow ¥ ¥ Jaydeys

is attached to the box in order to pull it alon
TN, find the value that T'm ceed, if th
string is

(i) horizontal
(i) 30° above t orizontal

(i11) 30° belog the hotgizontal.

Solutjon

acting on the box are shown in Figure 4.4.

R

29

Figure 4.4

Horizontal forces: T'> F 4——————— This is the condition for the
box to accelerate

Vertical forces: R = 2¢

R=2x98=19.6
The law of friction states that for a moving object
F=puR

So in this case
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Modelling with friction

It is clear from the
example that the force
required to move the
box is largest when the
force from the string

is pointing downwards.
The component of the
force in the downward
direction increases the
normal reaction, which
in turn increases the
frictional force.

(iif)

?\
X

F=04X19.6
F=7.84N

T must exceed 7.84 N for the box to accelerate.

The forces acting on the box are shown in Figure 4.5.
R

is is the condition for
the box to accelerate

29
Figure 4.5
Resolving horizontally: T cos30° “—
vertically: R + T sin g
So that n e
When motion occurs ¢ — T'sin30°)

0.4(2¢g — T'sin30°)

This equation
shows that in
this situation the
magnitude of R
is less than 2¢

0.4 sin30°) > 0.8¢
0.8x9.8 _7.84 _

Rearrangin
T> = =
& (cos30° +0.45in30°)  1.066
ceed 785N for the box to accelerate.

T atst
The'orces acting on the box are shown in Figure 4.6.
R

29
Figure 4.6
Resolving horizontally: T cos30° > F
vertically: R = T'sin30° + 2¢
When motion occurs F = 0.4R = 0.4 (T sin30° + 29)
So that T cos30° > 0.4 (T sin30° + 2g)

T> 7.84 _ 784
(cos30°—0.45in30°)  0.666

T>11.77 ...
T must exceed 11.8 N for the box to accelerate.

7.35 ...




Example 4.3 Figure 4.7 shows a block of mass 5kg resting on a rough table and connected

by a light inextensible string passing over a smooth pulley to a block of mass
4kg. The coeflicient of friction between the 5kg block and the table is 0.4.

NS

5kg

Figure 4.7

(i) Draw diagrams showing the forces acting on each block and the
direction of the system’s acceleration.
(i) Show that acceleration does take place

uolldLly J0j japow ¥ ¥ Jaydeys

(i11) Find the acceleration of the system an ension in the string.

Solution
(i)

The 5kg block has no
vertical acceleration.

R =5¢

4kg

The directions of the
acceleration of the
blocks are clearly as
shown here

v

4¢

Figure 4.8

The equations of motion of the blocks are

The 4kgblock 4¢—T=4a Q@

The 5kgblock T-F=5a (@

Adding(Mand @ 4¢— F=9a (@ ¢——— You need to show that a> 0

The maximum possible value of Fis uR = 0.4 X 5¢ = 2¢
So in the left hand side of @), 4¢ — F> 0
Therefore a > 0 and sliding occurs.
(i11)) When sliding occurs, you can replace F by uR = 2¢
Then @) gives 2¢g = 9a
a= % g=2.17

The final answer is
rounded to 3 s.f. and
so is consistent with a
value of 9.80 for g.

= — : 7 v
Substituting in () gives T = 4(¢g — a) = 4 X 54 = 30.5 (3 s.f.)

The acceleration of the system is 2.2 ms? and the tension in the string is 30.5N.
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Modelling with friction

Example 4.4

In a situation like this
where an object is on

a slope, it is almost
always easier to

work with directions
perpendicular and
parallel to the slope
rather than vertical and
horizontal.

You can think of

the weight mg as

the resultant of two
resolved components.

Substituting for Fand

R from () and (2)

A block of mass m is placed on a slope inclined at an angle 6 to the
horizontal. The coefficient of friction between the block and the slope is 0.4.

(i) Find the values of 6 for which the block would be at rest.
The angle of the slope is actually 30°.

(i1) Find the time taken for the block to slide a distance of 1.5m down the
slope, assuming it starts at rest.

Solution

(i) The forces acting on the block are shown in Figure 4.9.

[ Normal reaction ]

Figure 4.9
The weight mg can b : omponents g cos 6

mg sin 6 < umg cos 0
= sinf < u coso
=tanf < pu

6 < arctan u

In this case u = 0.4,s0 tan 6 < 0.4 and
0 <21.8°.

The block is at rest for values of 0 less than 21.8°.

Figure 4.10

Figure 4.11

The block is now sliding down the plane. It has an acceleration, a.
The equation of motion for the block is

ma = mg sin30° — F ®



; .
T T > Historical
note

Charles Augustin de
Coulomb was born in
Angouléme in France
in 1736 and is best
remembered for his
work on electricity
rather than that on
friction. Coulomb’s
law concerns the
forces on charged
particles and was
determined using

a torsion balance.

The unit for electric
charge is named

after him. Coulomb
worked in many fields,
including the elasticity
of metal, silk fibres
and the design of

windmills. He died in
Paris in 1806.

Since the block 1s moving
F = uR = 0.4mg cos30° @
Substituting @) into )
ma = mg sin30° — 0.4mg cos30°
Dividing through by m
a =g (sin30° — 0.4 cos30°)
=9.8 X (0.5—-0.4 X 0.866 ...)
= 1.505 ...

Using the constant acceleration formula s = ut + Lop with u = 0,
s=1.5and a = 1.505..

1.5=10.5x1.505 ... X £

o= —12 =141,
0.5%1.505...

The block takes 1.4s to slide dow:

pplied to mechanics problems. For example, two objects
o the ground with the same acceleration. However

ich the block is about to slide down the slope is called the
The angle of friction is often denoted by A (lambda) and is

angle of the slope is equal to the angle of the friction, it is just
for the block to stay on the slope without sliding. If the slope is
teeper, the block will start to slide.

A block of mass 25kg is resting on a horizontal surface. It is being pulled
by a horizontal force TN, and is on the point of sliding. Draw a diagram
showing the forces acting and find the coefficient of friction when

M T=20
i T=5
A box of mass 25 kg is resting on rough horizontal ground. The box can

just be moved by a horizontal force of 60 N. Find the coefhicient of friction
between the box and the floor.

A stone is sliding across a frozen pond. It travels a distance of 12m before
coming to rest from an initial speed of 4ms™.

Find the coefficient of friction between the stone and the pond.

A parcel drops out of a van travelling at 20ms™. The parcel slides a distance
of 30m before coming to rest. Calculate the coefficient of friction between
the parcel and the road.

uoljdldy Joj19pow y ¥ Jaydey)
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- Modelling with friction

(B In each of the following situations find, in any order, the acceleration of the
system, the tension(s) in the string(s) and the magnitude of the frictional force.

(a) (b)

u=03 u=0.1
i:!ﬁ 4kg
(c) (d)
u=02 w=0.15

Figure 4.12

(® A block of mass 5kg is about to

o :
30° to the horizontal, u 50N

30°

friction Between

plan

Figure 4.13

@ An ice hockey player is sliding a puck of mass 50 g across the ice rink. The
f the puck is 8ms™ and it takes it 40 m to come to rest.

ce

ind the deceleration of the puck.
ind the frictional force acting on the puck.

Find the coefficient of friction between the puck and the ice rink.

(iv) How far will a 60 g puck travel if it, too, is given an initial speed of 8ms'?

A car of mass 1200kg is travelling at 30 ms™ when it is forced to perform
an emergency stop. Its wheels lock as soon as the brakes are applied so that
they slide along the road without rotating. For the first 40m the coefficient
of friction between the wheels and the road is 0.75 but then the road
surface changes and the coefficient of friction becomes 0.8.

(il Find the deceleration of the car immediately after the brakes are applied.
(il Find the speed of the car when it comes to the change of road surface.
(il Find the total distance the car travels before it comes to rest.

(® A girl, whose mass is 25 kg, is sitting on a sledge of mass 10kg which is
being pulled at constant speed along horizontal ground by her brother. The
coeflicient of friction between the sledge and the snow-covered ground is
0.1. Find the tension in the rope from the boy’s hand to the sledge when:

(il the rope is horizontal

il the rope makes an angle of 20° with the horizontal.
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A particle of mass 5kg is projected upwards along a plane that is inclined
at an angle of 25° to the horizontal, with a speed of 10ms™. The particle
comes to rest after 10m.

li)  Find the deceleration of the particle.

li)  Find the frictional force F and the normal reaction R, and hence
deduce the coefficient of friction between the particle and the plane.

The particle then starts to move down the plane with acceleration a ms=.
li) Find a and the speed of the particle as it passes its starting point.

@ A 10kg block lies on a rough horizontal table. The coefficient of friction
between the block and the table is 0.15.The block is attached, by a light
inextensible string, which passes over a smooth pulley to a mass of 2kg
hanging freely. The 10kg block is 1.2m from the pull y and the 2kg mass is
1m from the floor. The system is released from rest.

li)  the acceleration of the system
lil the time taken for the 2kg mass to re
li) the velocity with which the 10kg

Figure 4.

@ A

su

200N 1is pulled at a steady speed across a rough horizontal
e which makes an angle « with the horizontal. The
nt of friction between the box and the surface is 0.5. Assume that
boxslides on its underside and does not tip up.

Figure 4.15

li)  Find an expression for the value of T for any angle o.

lil  For what value of er1s T'a minimum and what is the value of that
minimum?
@ A block of mass 10kg is lying on a rough plane inclined at 30° to the
horizontal. A horizontal force P is applied to the block as shown in

Figure 4.16.The coefficient of friction between the block and the plane
is 0.5.
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Modelling with friction

30°

Figure 4.16

(i) Find the least force P necessary to start the block sliding up the plane.

lil  Find the least force P necessary to stop the block from sliding down
the plane.

KEY POINTS

1 The total contact force between two s
frictional force and a normal reaction

ne surface on the other and y is the
surfaces.

u have completed this chapter, you should:

rstand that the total contact force between surfaces may be expressed in
terms of a frictional force and a normal reaction

be able to draw a force diagram to represent a situation involving friction
understand that a frictional force may be modelled by F < uR

know that a frictional force acts in the direction to oppose sliding

be able to model friction using F = uR when sliding occurs

know how to apply Newton’s laws of motion to situations involving friction

be able to derive and use the result that a body on a rough slope inclined at
angle arto the horizontal is on the point of slipping if u =tan o

) 2
>
>
>
>




() A train starts from rest and accelerates uniformly for 4 minutes, by which
time it has gained a speed of 36 kmh™". It runs at this speed for 5 minutes
and then decelerates uniformly, coming to rest in 2 minutes.

(i) Draw the speed-time graph using consistent units on the two axes. [4 marks|
lil Find the total distance travelled. [3 marks]

(@ A particle is moving in a straight line. The position s of the
particle at time ¢ is given by

s=18=24t+9F—F, 0<t<5
li)  Find the velocity v at time f and the values of ¢ for which v = 0. [4 marks]

L 189S :isuolisanp adideld

lil Find the position of the particle at those times. [2 marks]
li) Find the total distance travelled by the partiele,inithe interval 0 < ¢ < 5.
[5 marks]
(® A skier of mass 60kg is skiing down a sla

20° to the horizontal.
i)  Draw a diagram showing the £0 the skier. [3 marks]
lil Resolve these forces into co rallel and

perpendicular to the s [2 marks]

il The skier is travelling at constantspeed. Find the normal reaction
of the slope on the skieiand ghe resistive force on her. [3 marks]

e tension in the rope. [2 marks]

ddenly breaks. How far does the skier travel before
O Test? [4 marks]

Find the magnitude of P and Q. [3 marks]
Find the magnitude and direction of a force of -3P + +/3Q.  [3 marks]
Figure 1 below shows the path of a particle P moving in the Cartesian plane
with origin O, drawn with graph-drawing software.

The position of P at time ts is = (2t3 -3t +2)i+(t— 1)’j, where i and j
are unit vectors in the directions Ox and Oy and —1<t<2.

)4

A

4
\
\\
2 \\
/
//
»X
14 12 0 D i 5

Figure 1
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Practice Questions: Set 1

() Determine the time(s), if any, when P is instantaneously at rest. [3 marks]

lil  Sketch a copy of the path of P and indicate the points where
t =-1,0,1 and 2 and the direction of travel.

Describe briefly the motion of P about the time when ¢ = 0.
Describe briefly the motion of P about the time when ¢ = 1. [4 marks]

10m

Figure 2
A chute at a water sports centre has been d
slide down a steep part which is 10m
horizontal. They then come to a 20 m'Se
the horizontal, where they trave

that swimmers first
gle of 40° to the
with a gentler slope, 11° to
speed.

i)  Find the coefficient of fri een a swimmer and the

chute. [4 marks]
(il  Find the acceleration of a swimmer on the steeper part. [4 marks|
i) Find the speed of @swim at the end of the chute.
eed is lost at the point where
[3 marks]

[4 marks]



Impulse and momenfum

I collided with a
stationary truck coming '
the other way.

Statemen’ un an
insurance form re, nrted
in the Toronto N 'vs

» The karate expert in the photograph has just broken a pile of wooden
plamks with a single blow from his hand. Forces in excess of 3000N have
been measured during karate chops. How is this possible?
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Example 6.1

/Discussion point )

Show that the average
force she applies to the
ball in the cases where
the impact lasts 0.1s
and 0.015s are 18N
and 120N, respectively.
What does ‘average’
mean in this context?

1 Impulse

Although the karate expert produces a very large force, it acts for only a short
time. This is often the case in situations where impacts occur, as in the following
example involving a tennis player.

/Discussion point

The magnitude of the
momentum of an object
is often thought of as
its resistance to being
stopped. Compare the
momentum and kinetic
energy of a cricket ball
of mass 0.15kg bowled
very fast at 4A0ms™'

and a 20 tonne railway
truck moving at the very
slow speed of 1cm per
second.

~

Which would you rathe
be hit by, an object
high momentum
low energy, or one

high energy and low
momentum?

A tennis player hits the ball as it is travelling towards her at 10ms™'

horizontally. Immediately after she hits it, the ball is travelling away from her at
20ms™" horizontally. The mass of the ball is 0.06 kg. What force does the tennis
player apply to the ball?

Solution

You cannot tell unless you know how long the 1
from one shot to another.

act 1asts, and that will vary

Although you cannot calculate the force unles now the time for which

it acts, you can work out the product fgQ his is called the impulse. An

e by J.

impulse is usually denoted by J and its

When a constant force acts for

known separately but their combined effect is known, as
.The S.I. unit for impulse is the newton second (Ns).

Impulse momentum
When ion§)in one dimension and the velocity of an object of mass m
is change o v by a constant force F, you can use Newton’s second law

equations for motion with constant acceleration.

F=ma
nd v=u+at
= my = mu + mat

Substituting F for ma gives  mv = mu + Ft

= Ft=mv —mu @

The quantity ‘mass X velocity’ is defined as the momentum of the moving object.

The equation () can be written as

impulse of force = final momentum N initial momentum ®

So impulse = change
in momentum

final momentum

initial momentum

This equation also holds for any large force acting for a short time even when it
cannot be assumed to be constant. The force on the tennis ball will increase as it
embeds itself into the strings and then decrease as it is catapulted away, but you
can calculate the impulse of the tennis racket on the ball as

0.06 X 20 — 0.06 X (=10) = 1.8 Ns

impulse

the -10 takes account of
the change in direction

Equation (2) is also true for a variable force. It is also true, but less often used,
when a longer time is involved.

wnjuawouw pue as)ndw) 9 Jaydeyn
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Impulse

Example 6.2 A ball of mass 50 g hits the ground with a speed of 4ms™" and rebounds with

an initial speed of 3ms™'. The situation is modelled by assuming that the ball
is in contact with the ground for 0.01s and that during this time the reaction
force on it is constant.

@) Find the average force exerted on the ball.
(i)  Find the loss in kinetic energy during the impact.

(i)  Which of the answers to parts (i) and (i) would be affected by a
change in the modelling assumption that the ball is only in contact
with the ground for 0.01s?

Solution R
(i)  The impulse is given by:
J=mv —mu

'3ms™!
oo T +
s
Y
=0.05%X3 - 0.05 X (—4)
=0.35

The impulse is also given TJ Ns
J="Frt Figure 6.1
where F is the avefage forced.e. the constant force which, acting for the

same time interval) the same effect as the variable force which

actually actedl.
0.35 =F x 0.01
F=35
_l\_lp_t_q ___________ ground exerts an average upward force of 35NN.
Example 6.2 h

( it .]5.=%><0.05><42

= 0.400 joules

demonstrates the
important point that
mechanical energy is
not conserved during a
impact.
Although the fo
gravity acts du
impact, its impulselis
negligible over such 3
short time.

Final K.E. = £X0.05%3?
= 0.225 joules
Loss in K.E. = 0.175 joules
(This is converted into heat and sound.)

(1) A change in the model will affect the answer to part (i), but not part (ii).

Example 6.3 A car of mass 800kg is pushed with a constant force of magnitude 200 N

for 10s. The car starts from rest. Resistance to motion may be ignored.
@) Find its speed at the end of the ten-second interval by using
(a) the impulse on the car (b) Newton’s second law.

(i)  Comment on your answers to part (1).



Solution
@) (a) The force of 200N acts for 10s, so the impulse on the car is

The impulse is in the »  J=200X%10=2000Ns
direction of the force.

Hence the change in momentum (in Ns) is

my = 2000
2000 _
V=300 = 2.5

The speed at the end of the time interval is 2.5ms .

Since the force is — (b) Newton’ second law

assumed to be a

constant, so is the F=ma

acceleration and so you

can use the constant 200 = 8004

acceleration formulae. 7= 0,25 mg2
v=u+ at

wnjuawouw pue as)ndw) 9 Jaydeyn

r=0+0.25%x10= 25

(i)  Both methods give th
Newton’s second la ant acceleration formulae only

works because the f«

and so th rall*éffect is given by
T v=1 v
I th=mJ. @dt=mJ‘ dv
0 =u dt U
=ml —mU

is 1s the impulse—-momentum equation.

(D Find the momentum of the following objects, assuming each of them to be

O travelling in a straight line.

(il An ice skater of mass 50kg travelling with speed 10ms™".

il An elephant of mass 5 tonnes moving at 4ms~".

(i) A train of mass 7000 tonnes travelling at 40 ms™".

(iv) A bacterium of mass 2 X 107'*g moving with speed 1 mms™.

(@ Calculate the impulse required in each of these situations:

(il to stop a car of mass 1.3 tonnes travelling at 14 ms™!

1

il to putt a golf ball of mass 1.5g with speed 1.5ms ~

(i) to stop a cricket ball of mass 0.15 kg travelling at 20ms™!

1

(iv) to fire a bullet of mass 25 g with speed 400 ms™".
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Impulse

(® A stone of mass 1.5kg is dropped from rest. After a time interval ts, it has

fallen a distance sm and has velocity vms™".

Take ¢ to be 10ms™2 and neglect air resistance.

() Write down the force F (in N) acting on the stone.

(il Find s when t = 2.

(il Find v when = 2.

livy  Write down the value, units and meaning of Fs and explain why this
has the same value as %X 1.50%,

(v)  Write down the value, units and meaning of Ff and explain why this
has the same value as 1.5v.

@) A ball of mass 200 g is moving in a straight line with a speed of 5ms™! when

a force of 20N is applied to it for 0.1s in the dire¢tion of motion. Find the
final speed of the ball

(il using the impulse-momentum equation

(i) using Newton’s second law and t ant acceleration formulae.
il  Compare the methods.
(®) A girl throws a ball of mass 0.06

Take ¢ to be 10ms™? and negle

1

() What is the initial nt
il  How long does it ftake for the ball to reach the top of'its flight?
il What is thegnome e ball when it is at the top of its flight?

liv)] What1i se acted on the ball over the period between its being

(i e average force needed to stop the ball if it takes
a) 0.1s (b)  0.05s.
y does the action of taking a ball into your body make it easier to catch?

A car of mass 0.9 tonnes is travelling at 13.2ms ! when it crashes
head-on into a wall. The car is brought to rest in a time of 0.12s.
Taking ¢ to be 10ms™, find

(i) the impulse acting on the car
lil the average force acting on the car
i) the average deceleration of the car in terms of g.

liv) Explain why many cars are designed with crumple zones rather than
with completely rigid construction.

Boris is sleeping on a bunk-bed at a height of 1.5m when he rolls over and
falls out. His mass is 20 kg.

(i) Find the speed with which he hits the floor.

(il Find the impulse that the floor has exerted on him when he has come
to rest.

(i) Find the impulse he has exerted on the floor.
[t takes Boris 0.2s to come to rest.

(iv) Find the average force acting on him during this time.
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(@ A railway truck of mass 10 tonnes is travelling at 3ms™' along a siding
when it hits some buffers. After the impact it is travelling at 1.5ms™" in the
opposite direction.

(i)  Find the initial momentum of the truck.

(i) Find the momentum of the truck after it has left the buffers.

(]
(il Find the impulse that has acted on the truck. =
During the impact the force FN that the buffers exert on the truck varies -gr
as shown in this graph. ;
’ 3
o
=
n
D
)
=]
o
3
.
1
o 0.1 t f:,b
—
Figure 6.2 5
(iv) State what information is givel rea under the graph.

(v)  What is the greatest v
A van of mass 2500 kg statts from

the driving force on its en

t. In the first 4 seconds after starting,

s the relationship F(f) = 2400¢ — 300¢>.
(il Find the tot pulse on the van over the 4 seconds.

(il Find the spee the van, ignoring the effect of air resistance.

2 Cans@&gvation of momentum

ISI@gNS
ment to investigate car design, two vehicles were made to collide

-on. How would you investigate this situation? What is the relationship
en the change in momentum of the van and that of the car?

—ty

direction defined
to be positive

2500kg 1000kg

Figure 6.3

Remember Newton’s third law. The force that body A exerts on body B is equal
to the force that B exerts on A, but in the opposite direction.

Suppose that once the van is in contact with the car, it exerts a force F on the
car for a time t. Newton’s third law tells us that the car also exerts a force F on
the van for a time t. (This applies whether F is constant or variable.) So both
vehicles receive equal impulses, but in opposite directions. Consequently, the
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Conservation of momentum

It is important to
remember that although
momentum is conserved
in a collision, mechanical
energy is not conserved.
Some of the work done
by the forces is converted
into heat and sound.

Example 6.4

Note

When you are solving
an impact problem,
always draw a ‘before’
and ‘after” diagram like
this one.

All relevant information
on the masses and
velocities of the two
vehicles is given on it.

increase in momentum of the car in the positive direction is exactly equal to the
increase in momentum of the van in the negative direction. For the two vehicles
together, the total change in momentum is zero.

This example illustrates the law of conservation of momentum.

The law of conservation of momentum states that when there are no external
influences on a system, the total momentum of the system is constant.

Since momentum is a vector quantity, this applies to the magnitude of the
momentum in any direction.
For a collision you can say

total momentum before collision = total momentum after collision

The vehicles experience
equal and opposite
impulses.

The two vehicles in the previous discussion ad-on, and, as a result,

the van comes to rest.

+

_>
20ms™
direction defined
to be positive | S
® ®
1000 kg

Figure 6.4

@) Draw ams showing the situation before and after the collision.

(i)  Find the finaljyelocity of the car, vms™

(ii1) e impulse on each vehicle

( ind¢he kinetic energy lost.

(v) n modelling the collision, it is assumed that the impact lasts for one-
twentieth of a second. Find the average force on each vehicle and the
acceleration of each vehicle.

olution

(1) The vehicles are modelled as particles.

10 0 ;
20 v
- — >
Before impact _t 5 After impact
Figure 6.5

(i)  Using conservation of momentum, and taking the positive direction
as being to the right:

2500 X 10 + 1000 X (=20) = 2500 X 0 + 1000 X v
5000 = 1000 v
v=>5



The final velocity of the car is 5ms ! in the positive direction
(i.e. the car travels backwards).

(111) Impulse = final momentum — initial momentum
For the van, impulse = 2500 X 0 — 2500 X 10
= —25000 N's
Be careful not to For the car, impulse = 1000 X 5 — 1000 X (—20)
confuse J as a symbol = 125 000 N's

for impulse and as the
short form of joule, the

. The van experiences an impulse of 25000 N's in the negative
unit for energy.

direction, the car 25000 N's in the positive direction.

~ (iv) Total initial K.E. =2x2500x 10 +1x 1000 x g0?

/Discussion point _
= 325 000 joules

These accelerations

wnjuawouw pue as)ndw) 9 Jaydeyn

(500ms*and -200ms~) Total final K.E. = £x2500x 02 +4 X 52

seem very high. Are they 2

realistic for a head-on = 12 500 joules

collision? Loss in K.E. = 312 500 jéliles

Work out the distance each

car travels during the time (v)  The impulse is equal to the @yerage force X time. If F is the average
interval of one-twentieth of force, then

a second between impact 1

and separation. This will give 25000=F x 55

you an idea of the amount of
damage there would be.

s it better for cars to be e on the car is 500000 N to the right and that on the
made strong so that there van i the left.

is little damage, or to be
designed to crumple under

impact? <

Example 6.5

ma on each vehicle gives an average acceleration of
or the car and —200ms 2 for the van.

This is over 50¢ and most people
black out at less than 10g.

an experiment on lorry bumper design, the Transport Research

aboratory arranged for a car and a lorry, of masses 1 and 3.5 tonnes, to travel

towards each other, both with speed 9ms™.

After colliding, both vehicles moved together. What was their combined
velocity after the collision?

Solution

The situation before the collision is illustrated below.

The vehicles are treated
as particles and all
relevant information is l Before impact ‘ |1 tonne = 1000 kg‘ | After impact
in the diagram.

1000kg 3500kg 4500kg

Figure 6.6
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Example 6.6 A child of mass 30 kg running through

- Conservation of momentum

Taking the positive direction to be to the right, before the collision

momentum of the car in Ns: 1000 X 9 = 9000
momentum of the lorry in Ns: 3500 X (=9) =-31 500
total momentum in Ns: 9000 — 31 500 = —-22 500

After the collision, assume that they move as a single object of mass
4.5 tonnes with velocity vms™" in the positive direction so that the total
momentum is now 4500vNs.

Momentum is conserved so 45000 = =22 500
v=-5

The car and lorry move at 5ms™" in the direction i which the lorry was
moving.

market at 4ms ' leaps on to
ind the speed of the child and

s frée to move easily.

a stationary shopping trolley of md8
trolley together, assuming that the

Solution

The diagram shows the Stpuationdbefore the child hits the trolley

4ms!

Oms™!

Figure 6.7

Taking the direction of the child’s velocity as positive, the total momentum
before impact is equal to 4 X 30 + 0 X 15 = 120Ns.

The situation after impact is shown below.

After impact

Figure 6.8




The total mass of child and trolley is 45 kg, so the total momentum after is
45y Ns.

Conservation of momentum gives:
45y =120
v= 2%

The child and the trolley together move at 2% ms .

Explosions

Conservation of momentum also applies when explosion§itake place provided
there are no external forces. For example when a bullet is\fired from a rifle, or a

rocket is launched.

Example 6.7 A rifle of mass 8kg is used to fire a b © s 80 g at a speed of 200ms™".

Calculate the initial recoil speed of]
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Solution

Before the bullet is fired, thetotal entum of the system is zero.

Before firing: rifle
and bullet have

Before explosion

Figure 6.9

ituation is as illustrated below.

200ms™ +

0.08kg

After explosion

e total momentum in the positive direction after the firing is 8v + 0.08 X 200.

For momentum to be conserved,

8v + 0.08 X 200 = 0

You have probably so that
realised that v would

turn out to be negative. p=008x200 _ _,

8

The recoil speed of the rifle is 2ms™.
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- Conservation of momentum

(D A spaceship of mass 50000kg travelling with speed 200ms™" docks with a

space station of mass travelling in the same direction with spee
O p i £ 500000kg lling in th directi ith speed
195ms . What is their speed after the docking is completed?

(@ A railway truck of mass 20 tonnes is shunted with speed 3ms™' towards a
stationary truck of mass 10 tonnes. What is the speed after impact
(i) if'the two trucks remain in contact?
il if the second truck now moves at 3ms™'?

(® The driver of a car of mass 1000kg falls asleep while it is travelling at
30ms . The car runs into the back of the car in front which has mass

800kg and is travelling in the same direction at 20ms~'. The bumpers of the
two cars become locked together and they continue as one vehicle.

() What is the speed of the cars immediately aft@r impact?

(il What impulse does the larger car give tg_the

travelling at 2ms".

(il Find the speed of the car
(il Find the magnitud

orizontally at 200ms~' when it becomes
of mass 16 kg which is free to slide on a

(ii) impulse from the bullet on the block.
bullegytakes 0.01s to come to rest relative to the block.
is the average force acting on the bullet while it is decelerating?

aceship of mass 50000kg is travelling through space with speed
s™! when a crew member throws a box of mass 5kg out of the back
with speed 10ms™" relative to the spaceship.

() What is the absolute speed of the box?
(il What is the speed of the spaceship after the box has been thrown out?

@ A gun of mass 500kg fires a shell of mass 5kg horizontally with muzzle
speed 300ms™".

(il Calculate the recoil speed of the gun.

An army commander would like soldiers to be able to fire such a shell from
a rifle held against their shoulders (so they can attack armoured vehicles).

(il Explain why such an idea has no hope of success.

Manoj (mass 70kg) and Alka (mass 50kg) are standing stationary facing each
other on a smooth ice rink. They then push against each other with a force
of 35N for 1.5s.The direction in which Manoj faces is taken as positive.

() What is their total momentum before they start pushing?
(il Find the velocity of each of them after they have finished pushing.
il Find the momentum of each of them after they have finished pushing.

(iv) What is their total momentum after they have finished pushing?
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(@ A truck P of mass 2000 kg starts from rest and moves down an incline from
A to B as illustrated in the diagram.The distance from A to B is 50m and
sin o = 0.05. CBDE is horizontal.

Figure 6.11

Neglecting resistance to motion, calculate:
(i) the potential energy lost by the truck P as it moves from A to B
(il the speed of the truck P at B.

towards a second

Truck P then continues from B without loss of spe
truck Q of mass 1500 kg at rest at D.The two truck§icollide and move on

towards E together. Still neglecting resistance ion, calculate:

il the common speed of the two trucks j
together

(iv) the percentage loss of kinetic enengy, in‘the collision.

Katherine (mass 40kg) and Elizabg
which is travelling across smooth
the back of the sledge withépeed 4
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are on a sledge (mass 10kg)
rizontalice at 5ms ™. Katherine jumps off
ackwards relative to the sledge.

() What is Katherine’s absolute speed when she jumps off?
(il With what sp

Elizabeth then j
to the sledg

i) W
liv) What

does Eli , still on the sledge, then go?

1

s off in the same manner, also with speed 4 ms™' relative

speed of the sledge now?
uld the final speed of the sledge have been if Katherine and
d both jumped off at the same time, with speed 4ms™

relative to the sledge?

( Discussion poi ewton’s law of impact

If you drop two differ
balls, say a tennis
ball and a cricket difterent heights.
ball, from the same
height, will they both
rebound to the same

our own experience probably tells you that different balls will rebound to

For example, a tennis ball will rebound to a greater height than a cricket ball.
Furthermore, the surface on which the ball is dropped will affect the bounce.

height? How will the A tennis ball dropped onto a concrete floor will rebound higher than if dropped
heights of the second onto a carpeted floor. The following experiment allows you to look at this
bounces compare with situation more closely.
the heights of the first

\ones? )
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Newton’s law of impact

(O

EXPERIMENT

The aim of this experiment is to investigate what happens when balls bounce.
Make out a table to record your results.

1 Drop a ball from a variety of heights and record the heights of release /1 and
rebound /. Repeat several times for each height.

2 Use your values of hn and hs, to calculate v and v, the speeds on impact and
rebound. Enter your results in your table.

3 Calculate the ratio 3" for each pair of readings of i and h_and enter the
results in yourtable.s

4 What do you notice about these ratios?

5 Repeat the experiment with different types of ball.

Coefficient of restitution

Newton’s experiments on collisions led hi
to the speeds before and after a direct colli

mulatela simple law relating

een two bodies, called
Newton’s law of impact.

speed of separation
speed of approach

= constal

This can be written as

speedgof separati constant X speed of approach

s called coefficient of restitution and is conventionally denoted by
o particular surfaces, e is a constant between 0 and 1. It does

ision for which e =1 is called perfectly elastic, and a collision for
0 is called perfectly inelastic.

or perfectly elastic collisions there is no energy loss. For perfectly inelastic
lisions the objects coalesce and the energy loss is the largest it can be.

Direct impact with a fixed surface

before impact afterimpact  The value of ¢ for the ball you used in the experiment is given by %, and you

o o should have found that this had approximately the same value each time for any
particular ball. When a moving object hits a fixed surface which is perpendicular to

V, Vs ! ) ) K X ) ) )
its motion, it rebounds in the opposite direction. If the speed of approach is v and
_ the speed of separation is v,
Figure 6.12 ‘
Newton’s law of impact gives
VS
—_—= e
Vﬂ
= v =ev



Collisions between bodies moving in the same
straight line

Figure 6.13 shows two objects that collide while moving along a straight line.
Object A is catching up with B, and after the collision either B moves away from
A or they continue together.

before + N after
Up Up Va Vp
—_— e —_— —_—
(#) o (¥) o
mau mg Mg mg

u,>u, for the collision

to occur Figure 6.13

Speed of approach: u,—u
v,z v, as B moves away )
from A Speed of separation: v,— v,

By Newton’s law

speed of separation approach

If the particles coalesce
thenv, =v, -

Q)

The law of conservation of m a second equation relating the
velocities before and after imp

mAVA+mBuB=mAuA+mBuB @

,allow you to calculate the final velocities, v, and v,
own in the next two examples.

[1516n takes place between two snooker balls. The white cue ball
at 2ms™" hits a stationary red ball. After the collision, the red ball
ig'the direction in which the cue ball was moving before the collision.
\The balls have equal mass and the coefficient of restitution between the two
balls is 0.6. Predict the velocities of the two balls after the collision.

Example 6.8

Solution

Let the mass of each ball be m. Before the collision, their velocities are u , and
u,. After the collision, their velocities are v, and v,.

The situation is summarised in Figure 6.14.

Ug = 0 since the red ball
is stationary

— 3
Uy = up=0 12 12
W= 4 R Wy R
m m m m

Figure 6.14
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Newton’s law of impact

Speed of approach=2 -0 =2

By Newton’s law of impact

Speed of separation =v, — v,

Speed of separation = e X Speed of approach

= ve— v, =0.6X2

= v,—v,=12 Q)

Conservation of By Myt my, = mu, + mu,
momentum

Dividing through by m, and substituting u = 2, u, = 0, this becomes
v, tv,=2 @
Adding @D + @ gives 2v, = 3.2
so v, = 1.6,and from equation ®, v, =04

After the collision both balls move in the original ditéction of the white cue ball,
the red ball at a speed of 1.6ms ' and the cue eed of 0.4ms™".

Example 6.9 An object A of mass m moving

with speed u in the opposite dix

its an object B of mass 2m moving

.The coefficient of restitution is e.
(1) Show that the rati pe ains unchanged whatever the value of e.

(i)  Find the loss of kinetic enétgy in terms of m, u and e.

Solution
;e velocifies of A and B after the collision be v, and v, respectively.

7 Vg
_— —_—
IN®) 8O
m 2m
Before impact After impact

Figure 6.15
Speed of approach = 2u — (—u) = 3u
Speed of separation = v, — v,
Using Newton’s law of impact
speed of separation = e X speed of approach
v,—v,=eX3u O)
Conservation of momentum gives
mv , + 2mv, = m(2u) + 2m(—u)
Dividing by m gives
v,+2v,=0 ®
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Equation (D) is v,— v, = 3eu

Adding D + @ 3v, = 3eu
v, = eu
From (2), v, =—2eu

The ratio of speeds was initially 2u: u and finally 2eu: eu so the ratio of
speeds is unchanged at 2:1 (providing e # 0).

Note Initial K.E. of A

In this case, Aand B -
lose all their energy Initial K.E. of B

when e =0, but this is Total K.E before impact
not true in general. .
Only when e=1is there Final K.E. of A

no loss in K.E. Kinetic ‘
energy is lost in any Final K.E. of B

collision in which the Total K.E. after impact
coefficient of restitution
Loss of K.E.

is not equal to 1.

wnjuawouw pue as)ndw) 9 Jaydeyn

raw diagrams when answering these questions.

You will find it help

i after (ii) before after
o (#)
-~
v="7
e=0.6

—>
18ms 12ms 2.4ms™!

(i) pefore after liv]  before after
o lZ.Afms1 o T1.8ms1 o l4ms1 o TV:?
P e P e
e=? e=0.8
Figure 6.16
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Newton’s law of impact

(il A football hits the goalpost at 10ms™' and rebounds in the opposite

direction with speed 3ms™.

il A beanbag is thrown against a wall with speed 5ms™" and falls straight
down to the ground.

(i) A superball is dropped onto the ground, landing with speed 8 ms™" and

rebounds with speed 7.6 ms™.

liv) A photon approaches a mirror along a line normal to its surface with speed
3 X 10°ms™" and leaves it along the same line with speed 3 X 10°ms™".

A tennis ball of mass 60 g is hit against a practice wall. At the moment of
impact it is travelling horizontally with speed 15ms™". Just after the impact
its speed is 12ms™, also horizontally. Find:

(i) the coefficient of restitution between the ball and the wall
(il the impulse acting on the ball

il the loss of kinetic energy during the i

A ball of mass 80 g is dropped from a hei > o a level floor and

(il the speed of the ball just befe
il the speed of the ball just 3
il the coefficient of restituti

(iv) the change in the
floor to just after

(v)

hei
the situations below, a collision is about to occur. Masses are
n rams, speeds are in metres per second. In each case

(vi) t of the ball’s next bounce.

In eac

itagrams showing the situation before and after impact, including
nown velocities and the symbols you are using for velocities that are
ot yet known.

il  Use the equations corresponding to the law of conservation of
momentum and to Newton’s law of impact to find the final velocities.

(i) Find the loss of kinetic energy during the collision.

(a] 4 _2> (b) i> 2

:;: :;i e=1] s;a S;a e=1
(c) 2y NG @ 1y <

@ 0~ 0 0O -
) Ty < (- <

S;a sla e=1 ' ' e=0.2
Figure 6.17



(& An object of mass 10kg is acted on by a force whose magnitude varies
according to the distance from the starting point O, as shown on the graph.
The force acts in a constant direction.

force (N)
5

0 10 20 distance (m)
Figure 6.18

() What work has been done by the force when the object reaches the
point 20m from O?

il If the object starts from rest, what is its final speed?

(i) What is its final momentum?
(iv) What is the total impulse of the force ove
(@ Two children drive dodgems straight at ea

Both dodgems have the same mass (incl
is driving at 3ms™!, Stuart at 2ms’!
Find
(i)

(ii)
(iii)
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at impulse does the trapeze artist receive?
much mechanical energy is absorbed in the impact?

If you were a trapeze artist would you prefer a safety net with a high
coeflicient of restitution or a low one?

Two spheres of equal mass, m, are travelling towards each other along the
same straight line when they collide. Both have speed v just before the
collision and the coefficient of restitution between them is e. Your answers
should be given in terms of m, v and e.

() Draw diagrams to show the situation before and after the collision.
(il Find the velocities of the spheres after the collision.
(i) Show that the kinetic energy lost in the collision is given by m1*(1 — ¢?).

liv) Explain why the result in part (ii1) shows that e cannot have a value
greater than 1.
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- Newton’s law of impact

Three identical spheres are lying in the same straight line. The coefficient of
restitution between any pair of spheres is 1y Initially the left-hand sphere has
a velocity of 2ms™" towards the other two which are both stationary. What
are the final velocities of all three, when no more collisions can occur?

2 0 0
Figure 6.19

@D Figure 6.20 shows two snooker balls and one edge cushion. The coefficient
of restitution between the balls and the cushion is 0.5 and that between the
balls is 0.75. Ball A (the cue ball) is hit directly towards the stationary ball B
with speed 8 ms™'. Find the speed and directions of the two balls after their
second impact with each other.

Figure 6.20
(@ An object of mass 10

acted on by a force F =

rest at O (see diagram Figure 6.21), and is

here s is the distance from O.

force, F (N)

6.21

hat is the speed when s = 20?
(ii)
The coefficient of restitution between a ball and the floor is e. The ball is

dropped from a height h. Air resistance may be neglected, and your answers
should be given in terms of ¢, i, ¢ and n, the number of bounces.

What is the total impulse of the force?

() Find the time it takes the ball to reach the ground and its speed when it
arrives there.

(il Find the ball’s height at the top of its first bounce.
(i) Find the height of the ball at the top of its nth bounce.

(iv) Find the time that has elapsed when the ball hits the ground for the
second time, and for the nth time.

(v)  Show that according to this model the ball comes to rest within a finite
time having completed an infinite number of bounces.

(vi) What distance does the ball travel before coming to rest?

138



Impulse of a variable force

For a constant force, the impulse is force X time for which it acts.

When the force varies, the impulse over a small time interval &t is F &, and so

the total impulse over a period is defined as IF& (see Figure 6.22).

force (F N)

area = impulse (Ns)

time (£ s)
Figure 6.22
As you saw earlier in this chapter, over a period T the velocity changes
T
from Uto T det =ml/ —mU, that is, the 1 a forcedis equal to the
0

varies.

snooker balls, A and B, collide,

g that time the force between

, builds up to a maximum while
they deform slightly and then [goes dowi to zero again as the balls rebound. But,
by Newton’s third law, the forc B 1s equal and opposite to that of B on

change in momentum. This applies even 1
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Any collision involves variable forces.
they are in contact for a very short ti

A at every moment. S@/1f the total impulse on A is | F dt, that on B is

J—F dt = —JF dt.

The sum of thedmpulses on A and on B is zero and so the total momentum
change Thelprinciple of a conservation of momentum applies even
though areWariable.

pulse and momentum in more
than one dimension

Earlier in this chapter you met situations involving impact between objects
moving along a straight line. This involved working with momentum and
impulse. It is summed up by the equation

final momentum = initial momentum + impulse

These ideas are extended to motion in more than one direction.
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Impulse and momentum in more than one dimension

Both impulse and momentum are vectors. The impulse of a force is in the direction
of the force and the momentum of a moving object is in the direction of its velocity.
So the equation above can be represented as the vector diagram in Figure 6.23.

Figure 6.23

Written in symbols, the equation is:
mv =mua +J

The quantities u and v can usually be measured but J €annot and has to be
inferred, using the impulse-momentum equations form:

J=mv —mu

Figure 6.24 shows how this applies to a ba changes direction when it is
hit by a bat.
initial velocity initial momentu J=mv + (-mu)
impulse of
direction of bat )
|mpact T -mu
final velocity final momentumn final momentum —initial momentum

Figure 6.24

Example 6.10 I of'snooker, the white cue ball of mass 0.2kg is hit towards a

sta ry red ball at 0.8 ms™'. After the collision the cue ball is moving at
~! having been deflected through 30°.

O— S ¢

Figure 6.25

Find the impulse on the cue ball and show this in a vector diagram.

Solution

In terms of unit vectors i and j the velocities of the ball before and after the
collision are given by:

u =0.8i
v =0.6 cos 30°i + 0.6 sin 30°j
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Then, using the impulse-momentum equation:

J=mv—mu

=0.2(0.6c0s30° +0.65in 30°j) — 0.2(0.81)

=—0.056i+0.06j 2

1

Magnitude of impulse: =+0.056> +0.06> L
= 0.08207... s

Direction of impulse: _g
0.06 =

= 2 n
tano=5056 o

0.06 [7)

a=47° =

0= 133° 3

: : 9 g

The impulse has magnitude 056 ‘BD
0.082N's at an angle of 133° to the Fig 6 3
initial motion of the ball. 5

This is shown in the vector diagra 27. Note that the impulse—
momentum equation shows ire he impulsive force acting on

the cue ball.

—initial momentum

Discussion point

What happens to the
red ball? \ b

final momentum

Example 6.1 ’ A hockey ball of mass 0.15 kg is moving at 4ms™" parallel to the side of a

pitch when it is struck by a blow from a hockey stick that exerts an impulse
of 4 N's at an angle of 120° to its direction of motion. Find the final velocity
of the ball.

Solution

The vector diagram shows the motion of the ball.

j J=4Ns v
O—» Ams 60:}(\12&’ (}/{

Before impact After impact

Figure 6.28
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- Impulse and momentum in more than one dimension

In terms of unit vectors i and j:
u =4
and

J =—4 cos 60°i + 4 sin 60°j

=21 + 3.46j
Using
J=mv —mu
—2i+ 3.46j =0.15v —0.15 X 4i
= 0.15v=-2i + 0.61 + 3.46j
= 0.15v =—1.41 + 3.46j

v =-933i +23.1j

v=v9.33% + 23.12=

¢=180°-68°
=112°

Figure 6.29
After the blow, the ball a velo

112° to the original dirgetion of motion.

1

agnitude 24.9ms ' at an angle of

If a sphere hi
then the ematics 1s

irectly (when its velocity is at right angles to the plane)
aightforward. Less straightforward is when a sphere
hits a plan angle. This becomes an example of a problem that requires
resolwing a velocity.

O i i A lovel onl lique impact of a sphere on a plane

content. hen an object hits a smooth plane there can be no impulse parallel to the
ne so the component of momentum, and hence velocity, is unchanged in this
direction. Perpendicular to the plane, the momentum is changed but Newton’s
law of impact still applies.

The diagrams show the components of the velocity of a ball immediately before
and after it hits a smooth plane with coeflicient of restitution e.

velocity of approach = v velocity of separation = ev
u u
Before impact After impact
Figure 6.30



When the ball is travelling with speed U at an angle « to the plane, the
components of the final velocity are U cos « parallel to the plane and eU sin ¢,
perpendicular to the plane.

Usin a eU sin eUsin a

tan = U cos o

U =etan g
U cos o U cos o
a B
I | I |
Before impact After impact
Figure 6.31

The impulse on the ball is equal to final momentum — initial momentum. This is
perpendicular to the plane because there is no change in fhomentum parallel to
the plane.

In Figure 6.30 the impulse is:
mev — m(—v) = (1 + e)mv upwards.
In Figure 6.31 the impulse is:
meU sin o — m(—U sin o) = (1 n o upwards.

Whenever an impact takes plac to be lost. In the cases

illustrated in the diagrams, the

Discussion point

What happens to the ball —m(u +v?)— m(1—e*)w?
whene=0ande=1? 2
or U’sin
Example 6.12 Ab g moving at 12ms ! hits a smooth horizontal plane at an
angle he horizontal. The coefficient of restitution is 0.5. Find:

impulse on the ball

the impulse on the plane

the kinetic energy lost by the ball.

Solution

The diagram shows the velocities before and after impact.

12 sin 75°
12ms™! ’ t
12 cos 75°

Figure 6.32
No change in velocity / eI plane: u=l2cosTs Using Newton’s
parallel to the plane. Perpendicular to the plane: v = 0.5 X 12'sin 75%_| |5y c?f impact with
= 6 sin 75° =le
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Impulse and momentum in more than one dimension

(ii)

The impulse on the ball = final momentum — initial momentum

12 cos75° 12 cos75° Using directionsii
=0.2 —-02 !
y=0 [6sin75°] 0 [_1251n75°] and j as shown.

_ 0
3.6sin75°

The impulse on the ball is 3.6 sin 75° j, that is, 3.48 N's perpendicular
to the plane and upwards in the j direction.

By Newton’s third law, the impulse on the plane is equal and opposite
to the impulse on the ball. It is 3.48 N's perpendicular to the plane in
the direction of —j.

The initial kinetic energy = l x02x12° =1

Final kinetic energy = % % 0.2

Loss in kinetic energy

Example 6.13

E 110'sin 60" = —
\/_

10 ms™! 10sm60 3

t v
10 cos 60° é—» 10 cos 60° /
[

Figure 6.33
( jz / Using sin 60°=§ and cos60° =1

Before impact After impact

- | 2 100 _ i
v= NG TF 5= 3 =5.77ms
S
_N3_ 1 5 a5
tanﬂ—T—\/_ﬁ 30



(D A snooker ball of mass 0.08kg is travelling with speed 3.5ms™" when it hits

® the cushion at an angle of 60°. After the impact the ball is travelling with
speed 2ms™" at an angle of 30° to the cushion.

35ms!

2ms
- /(

(i) Draw accurate scale diagrams to represent the following vectors:

-1

Figure 6.34

the momentum of the ball before impact
the momentum of the ball after impact

the change in momentum of the ball

il Use your answers to part (i) to estin
the impulse acting on the ball.
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il Resolve the velocity of the b fter the impact into

o the cushion.
(iv) Use your answers to ate the impulse which acts on the
ball during its impac

A hockey ball of mags 0.1

ushion. Comment on your answers.

velocity of the ball immediately after Jane has hit it?

traight, without losing any speed, to Fatima in the opposite
without stopping it. Its velocity is now 14i + 4j + 3k.

at impulse does Fatima give the ball?
ich player hits the ball harder?

Find the velocity of each of the following after one impact with a smooth

ane.
(i) Initial velocity 4ms™ at 20° to the plane. Coeflicient of restitution 0.5.
(i) Initial velocity 10ms™" at 40° to the plane. Coeflicient of restitution 0.1.
(i) Initial velocity u ms' at a® to the plane. Coefficient of restitution 0.8.

# A ball of mass 0.1kg moving at 10ms~" hits a smooth horizontal plane at an
angle of 80° to the horizontal. The coeflicient of restitution is 0.6. Find:

(il the impulse on the ball
(il the impulse on the plane
(il the kinetic energy lost by the particle.

(B) A particle of mass 0.05 kg moving at 8ms™! hits a smooth horizontal plane
at an angle of 45° to the horizontal. The coefficient of restitution is 0.6.
Find:

(i) the impulse on the particle

(il the impulse on the plane
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Impulse and momentum in more than one dimension

il the kinetic energy lost by the particle.

(® A ball of mass mkg moving at # ms™! hits a smooth horizontal plane at an
angle of a° to the horizontal. The coefficient of restitution is O.

() Find the impulse on the ball.
(il Show that the kinetic energy lost is %muzsinza.

(7 Show that the kinetic energy lost by a particle of mass mkg which hits a
smooth plane when it is moving with velocity #ms™ at an angle of &° to
the plane is %muz (l - ez)sinza, where e is the coefficient of restitution.

A ball is hit from level ground with initial components of velocity u_ms™'

horizontally and u, vertically. Assume the ball is a particle and ignore air

resistance.

2u u
() Show that its horizontal range is R = —~

The ball bounces on the ground with coefficient of restitution 0.6.

(i) How much further does it travel horizon fore the next bounce?
(i) Find an expression for the horizo

(iv) By considering the sum of a geon

(® A small marble is projected ho
at a speed of 2.5ms™" and
coeflicient of restitutio

Calculate:

(il the compoments of th city of the marble just before it hits the ground

(i) 1its hori distance from the edge of the table when it first hits the
(iii)

(iv) rizontal distance travelled between the nth and (n + 1)th bounces

The ball then rebounds and hits a second cushion which is perpendicular to

the first. The coeflicient of restitution for both impacts is 0.8.

(il Find the direction of motion after each impact,

(il Find the magnitude of the velocity after the second impact.

(i) Repeat parts (i) and (ii) for a ball moving at u ms™" which hits the first
cushion at an angle a. Assume the coefficient of restitution is e. Hence
show that the direction of a ball is always reversed after hitting two
perpendicular cushions and state the factor by which its speed is reduced.

) Two circular discs slide on a smooth horizontal surface. Disc A has mass 6kg

and disc B has mass14 kg and both are initially at rest. A force of 12NN acts

on disc A for 4 seconds and this disc then collides directly with disc B.The

coeflicient of restitution between the two discs 1s 0.25.
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0 This is section is
extension material,
stretching beyond the
specification.

Figure 6.35

(i) Calculate the velocity of disc A before the collision.

(il Show that, after the collision, disc B has speed 3ms ! and find the new
speed of disc A.

il Calculate the impulse on disc A in this collision.

Disc B now collides with a smooth surface at 60° to the line of its motion,

as shown in the diagram.The speed of the disc after the collision is 1.6 ms ™.

liv) Calculate the coefficient of restitution between the disc and the plane.

(@ A ball is projected horizontally from a table top of height h with speed u.
The coefficient of restitution between the ball and the ground is e.

() Find an expression for the time during which the ball is moving.

(il Find the total horizontal distance travelled.

(1 A ball falls vertically and strikes a fixed plane in
to the horizontal. The coefficient of restitutiom,is

ined\at an angle 6 (6 < 45°)
the ball rebounds

. 25
horizontally.
(i)  Show that tan6 = %\/7
(il  Show that the fraction of ki gy lost in the collision is %

5 Obliqgue impact ®f smooth elastic
sphere

Two smooth sphéres A o ss m, and B of mass m collide. Immediately before
impact the velocity of A is u'at an angle o with the line of centres of the spheres,
and the veloci is v at an angle S with the line of centres.

sin 8 usin a vsin g

D~ GO

Before impact After impact
Figure 6.36
When analysing an impact like this you need to consider the components of the
motion in two directions: perpendicular to the line of centres and along the line
of centres.

Motion perpendicular to the line of centres

There i1s no impulse between the spheres in the direction of their common
tangent at the point of contact and the momentum of each sphere in this
direction is unchanged by the impact.

Hence the component velocities after the collision in this direction are u sin «
for A and v sin S for B.

wnjuawouw pue as)ndw) 9 Jaydeyn
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Oblique impact of smooth elastic spheres

Speed of approach.

Motion along the line of centres

Calling the components of the velocities in the direction of the line of centres U
and V, conservation of momentum gives:

m ucoso — mprcosf=m U+ mpl”
The coefficient of restitution is e so that Newton’s law of impact gives:

e(wcosrx $ Vcosﬁ) =1/ — U4—— Speed of separation.

These two simultaneous equations are sufficient to determine U and V.

Once U andV are known, the velocities of A and B after the collision can be
written in vector form as:

v,=Ui+usinej and v, = Vi+vsing

where the directions along and perpendicular t of centres are denoted

by i andj.

Example 6.14

! strikes a

ith speed 2ms~
@at an angle of 60° to the line of

oth and have the same mass m.The

In a game of snooker, the cue bal
stationary red ball. The cue ball
centres of the two balls. Both ball
coeflicient of restitution en't s 1S =.

after impact.

L.

Find the velocities of thé.two ba

Solution

2 sin 60°

- @-

After impact

Before impact

Figure 6.37

Let the component velocities in the direction of the line of centres be U for
the cue ball and I for the red ball.

Conservation of momentum in the direction of the line of centres (i):

m X 2 cos60° = mU + ml/

1=U+V (A)¢— Divide by m and use cos60° = 0.5

Newton’s law of impact:

}cos60° = [/— U ¢—— Speed of separation.
1

Speed of approach. 5= V-U (B)
(A)+(B) Soopyyp=3
2 4
1 1
(A)—(B) 5= 2U=U= 7



The velocity of the red ball is %i, the velocity of the white ball is

%i +25in60°j = %i +/3j.
The red ball moves with speed 0.75ms ! along the line of centres. The cue

ball moves with speed 1.75ms ! at 82° to the line of centres.

r
(l)2+ 3= [ﬁ _7 0= arctan(&): 81.795
4 16 4

Example 6.15 A smooth sphere A of mass 2m, moving with sp ! collides with a

smooth sphere B of mass m moving with speg

immediately before impact makes an anglg @
O\°

wnjuawouw pue as)ndw) 9 Jaydeyn

(i)  Draw a diagram showing the's
(i)  Calculate the velociti

(i)  Calculate the loss of ki

impact.
Solution
@) Th ties of the two spheres are shown as well as their
omp ts along and perpendicular to the line of centres.

onents perpendicular to the line of centres (4sin45° = 242
A and 2 for B) are not affected by the collision.

e components along the line of centres are taken to be 17, and I/

j

20 L,i 20 2
TN

Figure 6.38

4m

Conservation of momentum along line of centres:

(i)  2m X 4 cosd45° =2mV +ml/,
> 42=20,+V, (A)

Using cos45°= 2

Sl

and dividing by m.
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Oblique impact of smooth elastic spheres

9=arctan(

1.32

>

2

2)\_/ro
2 )—65

2

W

22

Loomx 4%+

Newton’s law of impact:

e X 4 cos45° = V,=V,

(A)—(B):

(A)+2(B):

B moves with speed 3.62ms™
angle of 33.5° to the line @

The kinetic energy of th
before the collision.dsse¢ua

The

| =

1

X 2

(4—-2¢)\2 =3V,

v, =¥=1.319...

4(1+e)N2 =31,

2\2e=V, -V, (B

V,=2(4-2e)

3

L-2e=4L-2x0.6

Vs=¥(1+6) ——— 4(+d=4(1+06)

VB=#=3.016...

m X 18

1
2

Theloss in kinetic energy is:

8m —1629m =1.71m

K.E. after: %x 2m X

(28v2) |

2

Lossin K.E.8m—-6.293.m=1.71m

> V13224 (242 = 1322+ 8 =3.12

Velocity of A after impact: 1.32i + 2+/2 j

A moves with speed 3.12ms™" at an a

5° to the line of centres.

2
""arda”(&ow...

energy of the system after the collision is equal to:

312°+ = X m X 3.62°=16.29m

is result could have been obtained by consideration of the contribution from
the components of velocity along the line of centres only as there is no change
arising from the components perpendicular to the line of centres:

K.E. before: %x 2m x (2\/5)2+ % xmx0=8m

(e.aﬁ)z
+-X mX 3 =6.293...




In questions 16, a smooth sphere A of mass m, collides with a smooth sphere B

of mass m , as shown in Figure 6.39.

The coeflicient of restitution between the spheres is e.

Immediately before the collision, A is moving with speed u, at an angle o with

the line of centres and B is moving with speed u, at an angle B with the line of
centres.

Immediately after impact, A is moving with speed v, at an angle o, with the line
of centres and B is moving with speed v, at an angle B, with the line of centres.

Ua Up

Before impact

Figure 6.39
m, = 4kg,m, = 2kg,u, =2ms "', u, =4 a=p=45°.¢=0.5.

Calculate v, v,, a, and .

wnjuawouw pue as)ndw) 9 Jaydeyn

m,=m,=m, a=060%u,=uu 0.6.

Calculate v, v,, o, and
M=, = m, U, = U=

A
d B,

Calculate v , v, , &
u, = u, 0= 60° 8= 060°¢e=0.5.

m, = my=m,

Calculate v g, , o, .

= = = = — [e] — o
m, = m, yu, =u,u,=0,0=060°%a, = 90°.
Calculate e:

© ® ® ® O 6

ca,
tical smooth balls of mass m are moving with equal speed u in
opposite directions. The balls collide obliquely, so that the line of centres
etween the balls is at 30° to the direction of motion. Show that the loss in
kinetic energy due to the impact is 75% of what it would be if the impact
were direct.

A smooth sphere A of mass 2m moving with speed 2u collides with a
smooth sphere B of mass m moving with speed u.

At the moment of impact, A is moving at 60° to the line of centres and B is
moving at 90° to the line of centres.

The coefficient of restitution between the spheres is 0.5.

()  Find the component of velocity along the line of centres after impact
for each sphere.

(il Find the velocities of the spheres after impact.
il Find the loss in kinetic energy for the system.
(@ In this question all the discs are circular and have the same radius.

(il A disc of mass m is sliding across a table when it collides with a
stationary disc with the same mass. After the collision, the directions of
motion of the two discs are at right angles.
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Oblique impact of smooth elastic spheres

Prove that the collision is perfectly elastic.

(il On another occasion the disc of mass m collides with a stationary disc
of mass km, where k > 1, and the directions of their subsequent motion
are at right angles. The coefficient of restitution is e.

Prove that ¢ = %
(i) State a modelling assumption required for parts (1) and (ii).
The diagram illustrates a collision between two smooth spheres of equal
mass m. Initially they are moving along parallel lines but in opposite
directions. At impact the acute angle between their line of centres and the

directions of their original movement is o. The coefhicient of restitution in
the collision is e. Before the impact both spheres have speed u.

4
[e3
U,
<Y
Before impact i After impact 4
Figure 6.40
(i Show that the loss/f kinetic e in the collision is mu?> cos’ o (1 —e’ )

li) Show that, in the

e when o = 30° and e = %, the direction of motion

e pockets. WR = 100 cm and RC = 40 cm.

eir colour the balls are identical. Their diameter is 5.25 cm.

C
100 cm e 40 cm ¢

Figure 6.41

(il A player tries to hit the white ball exactly along the straight line WRC
so that the red ball will go into the pocket. Instead, however, he hits the
ball at an angle « to the required line.

‘What happens to the red ball in the cases when:
(a) e=0.5°
(b) o= 0.15°.
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Figure 6.42 shows a different situation. There are two red balls with centres
R, and R, on the line WC. R R, = 20cm and R,C = 20 cm.

® &+ O=.°
L]
100 cm 20 cm 20 cm

Figure 6.42

The player hits the white ball into the first red ball, which then hits the
second red ball. If the shot is successful the second red ball goes into the
pocket. A shot like this is called a ‘plant’.

The player hits the white ball at an angle & to the line WC.
(i) Show that, if @ = 0.15°, the shot is not successfu

lii)  Find, to 2 significant figures, the smallest value of\e for which the shot

1s unsuccessful.
liv) Explain why the plant is not a popula us snooker

players if the balls are not close to ea

wnjuawouw pue as)ndw) 9 Jaydeyn

KEY POINTS

3 The momentum of a body of m travelling with velocity v is given by mv. Momentum is
a vector quantity.

4 The S.1. unit of impulse dnd momen
5 The impulse-momen ation is

speed of separation
speed of approach

estitution e =

Figure 6.43

Component of velocity parallel to surface remains unchanged [v cos 8= 1 cos d
Component of velocity perpendicular to surface: [v sin 8= —eu sin o]

Loss in kinetic energy: %muzsinza(l = ez)
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Oblique impact of smooth elastic spheres

9

Oblique impact between smooth spheres

Figure 6.44

Perpendicular to line of centres
u sin and v sin fremain unchanged by the collision.

Along line of centres

Conservation of momentum:

mpucos o + myvcos B = m U +mpl/ ®
Newton’s law of impact:

V' —U = e(ucosa — vcos ) ®
Equations @) and @) can be solved to find U and V.

LEARNING OUTCOMES

When you have completed thi

Y Y Y Y

\

\

\

apter, you should:

understand t
during am.i

perfectly elastic collisions there is no energy loss
for perfectly inelastic collisions the energy loss is the largest it can be
stand the term oblique impact and the assumptions made when modelling oblique

k the meaning of Newton’s experimental law and of the coefficient of restitution when
applied to an oblique impact

be able to solve problems involving impact between an object and a fixed smooth plane by
considering components of motion parallel and perpendicular to the line of impulse

be able to solve problems involving impact between two spheres by considering
components of motion in directions parallel and perpendicular to the line of centres

be able to calculate the loss of kinetic energy in an oblique impact
be able to tackle impulse problems where the force varies with time
be able to tackle impulse problems in more than one dimension.




Circular motion

Whirlpools and storms
his circling arm invest; other examples can you think of?
With all the might of =» What makes objects move in circles?

gravitation blest.

=» Why does the moon circle the earth?
Alexander Pope | Y

=» What happens to the hammer when the athlete lets it go?

=» Do the pilots of the planes need to be strapped into their seats at the top of
a loop in order not to fall out?
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Introduction to circular motion

A rotating particle

\

P

Pl

Figure 7.1

1 Introduction to circular motion

The answers to the questions on the previous page lie in the nature of circular motion.
Even if an object is moving at constant speed in a circle, its velocity keeps changing
because its direction of motion keeps changing. Consequently the object is accelerating
and so, according to Newton’s first law, there must be a force acting on it. The force
required to keep an object moving in a circle can be provided in many ways.

Without the Earth’s gravitational force, the Moon would move off at constant
speed in a straight line into space. The wire attached to the athlete’s hammer
provides a tension force which keeps the ball moving in a circle. When the
athlete lets go, the ball flies off at a tangent because the tension has disappeared.

Although it would be sensible for the pilot to be stra
necessary to stop him falling out of the plane because
the force required for motion in a circle.

ed in, no upward force is
is weight contributes to

In this chapter, these effects are explained.

Units

For the early study of mathematicsjangles a
360° is a whole turn. In mor
in a different unit, called t
introduction to the radian

measured in degrees, where
ghematics, angles are measured
ere 21 radians is a whole turn. An
d at the back of this book as an appendix.

Notation

To describe
need a sui
ewton) for differentiation with respect to time in which, for

2 .
exa jtten as s',andi—?as 0.
2

shows a particle P moving round the circumference of a circle of
ntre O. At time ¢, the position vector OP of the particle makes an angle
1ans) with the fixed direction OA.The arc length AP is denoted by s.

ngular speed

Using this notation,
s=1r0
Differentiating with respect to time using the product rule gives

ds _ do dr

- "art 0 dr-
Since ris constant for a circle, % = (), so the rate at which the arc length
increases 1s

ds _ d@ . A
- °r $=10.
In this equation, § is the speed at which P is moving round the circle (often
denoted by v), and 0 is the rate at which the angle 0 is increasing, i.e. the rate at

which the position vector OP is rotating.

The quantity %, or 6, can be called the angular velocity or the angular speed of P.



It is common practice to
give angular speed as
multiples of

A rotating disc

Figure 7.2

Example 7.1
Notes

1

Notice that working
in fractions gives an
exact answer.

A quicker way t

do this questio
would be to notic
that, because the
cars have the same
angular speed,

the actual speeds
of the cars are
proportional to the
radii of the circles
in which they are
moving. Using this
method it is possible
to stay in mph. The
ratio of the two radii

iz 12
is 7250 the speed

of the second car is
12 B

1¢ X 40mph =

30 mph.

~ Every point on the disc describes a circular path, and all t

In more advanced work, angular velocity is treated as a vector, whose direction

. . . . de .

is taken to be that of the axis of rotation. In this book, FIRS often referred to
as angular speed, but is given a sign: positive for an anticlockwise rotation and
negative for a clockwise rotation.

Angular speed is often denoted by @, the Greek letter omega. So the equation
$=1r6 may be written as

V=1

Notice that for this equation to hold, 8 must be measured in radians, so the
angular speed is measured in radians per second or rads™.

Figure 7.2 shows a disc rotating about its centre, O, with angular speed @. The
line OP represents any radius.

points have the
same angular speed. However, the actual speed of a depends on its
distance from the centre: increasing r in the equagien, v = r

appreciate this if you have ever been at the eng @ tating line of people in a
he

per minute (rpm) where one revolutio
a computer hard disc might spi

crankshafts in car engines typically rotate at 3000 to 4000 rpm.

A police car driv
car moves so t
circle of radifts 12m. Is
(Use the appro

40 mph around a circular bend of radius 16 m. A second
the same angular speed as the police car but in a
second car breaking the 30 mph speed limit?

ation 1 mile = % km.)

Solut

verting miles per hour to metres per second gives:
40 mph =40 x Skmh™!
_40X8X1000

5%3600

_ 160 -1
== Y

9
Using v = r@

=10 rpgs!
9
The speed of the second car is:
v=12w

_10 ~
=3 X12 ms

_ 120 X5 X 3600
= 9x8xio00 mPh

= 30mph

The second car is just on the speed limit.

uoljow Jejnadigy ¢« J9ydey)
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Introduction to circular motion

(D Find the angular speed in radians per second to one decimal place, of

® antique records rotating at:
)  78rpm li) 45rpm (iii) 33% rpm.
(@ A flywheel is rotating at 300rads™!. Express this angular speed in rpm,
correct to the nearest whole number.

(® The London Eye observation wheel has a diameter of 135m and completes
one revolution in 30 minutes.

(i) Calculate its angular speed in:
(a) rpm (b)  radians per second.

(il Calculate the speed of the point on the circumference where
passengers board the moving wheel.

at has been wound
eed of the cylinder at a

#® A lawnmower engine is started by pulling a rope
round a cylinder of radius 4 cm. Find the a
moment when the rope is being pulled wvi
answer in radians per second, correct 0 ecimal place.

(® The wheels of a car have radius 20 cm. W 1s the angular speed, in radians per
second, correct to one decimal

(M 10ms™ il 30m
shianges continuously so that a laser can
read the data at a constant speedof 12ms™". Find the angular speed (in rpm)

when the distance of t m the centre is:

() 30mm (i)  55mm.
(@ What is th&ave angular speed of the Earth in radians per second as it
(i) ts the Sun

about its own axis?
the Earth is 6400 km.

(i at speed is someone on the equator travelling relative to the
centre of the Earth?

At what speed are you travelling relative to the centre of the Earth?
A tractor has front wheels of diameter 70 cm and back wheels of diameter 1.6m.

What is the ratio of their angular speeds when the tractor is being driven
along a straight road?

(® (i) Find the kinetic energy of a 50kg person riding a big wheel with
radius 5m when the ride is rotating at 3 rpm.You should assume that
the person can be modelled as a particle.

(il Explain why this modelling assumption is necessary.
The minute hand of a clock is 1.2m long and the hour hand is 0.8 m long.
(il Find the speeds of the tips of the hands.

(il Find the ratio of the speeds of the tips of the hands and explain why
this is not the same as the ratio of the angular speeds of the hands.

(D Figure 7.3 represents a ‘Chairoplane’ ride at a fair. It completes one
revolution every 2.5 seconds.

(il Find the radius of the circular path which a rider follows.
(il Find the speed of a rider.
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2m 3m 3m 2m
72.5° ! 0 72.5°

~J

Figure 7.3

Velocity and acceleration

Velocity and acceleration are both vector quantities. The
The positive either in magnitude—direction form, or in components. When describing circular
transverse direction motion or other orbits, it is most convenient to take ents in directions
along the radius (radial direction) and at right a

é erse direction).
rehefvelocity has:

an be expressed

uoljow Jejnauaiy £ Jaydeyn

For a particle moving round a circle of radius
radial component: 0
transverse component: 10 o

The acceleration of a particle shoving round a circle of radius r has:

radial component: 0’ orfrrw’

Figure 7.4 Velocity

transverse compone r@ or row.

The transverse ¢ 16is just what you would expect, the radius multiplied by

The positive radial . .
he particle has constant angular speed, its angular

direction

nd so the transverse component of its acceleration is also zero.

component of the acceleration, -r@?, is almost certainly

avel a circle is always accelerating towards the centre of the circle, but
$ '

d it helpful to remember that circular motion is not a natural state; left to itself
rticle will travel in a straight line. To keep a particle in the unatural state of
cular motion it must be given an acceleration at right angles to its motion,

.e. towards the centre of the circle.

Figure 7.5 Acceleration

The derivation of these expressions for the acceleration of a particle in a circular
motion is complicated by the fact that the radial and transverse directions are
themselves changing as the particle moves round the circle, in contrast to the fixed
x and y directions in the Cartesian system.The derivation is given in a mathematical
note on page 316. At first reading you may prefer to accept the results, but make
sure that at a later stage you work through and understand the derivation.
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Figure 7.6

Example 7.2

Circular motion with constant speed

2 Circular motion with constant
speed

In this section, the circular motion is assumed to be uniform and so have
no transverse component of acceleration. Later in the chapter, situations are
considered in which the angular speed varies.

Problems involving circular motion often refer to the actual speed of the object,
rather than its angular speed. It is easy to convert one into the other using the
relationship v = r@. The relationship can also be used to express the magnitude
of the acceleration in terms of v and r.

Velocity v = ro

ngular speed 0=0

leration has

2 3 v’
magnitude a = r@> = -
and is directed towards
the centre

A turntable is rotating ag 45 rpm. A fly 1s standing on it, 8 cm from its centre.
Find

@) the angular speed of the fly in radians per second

(i)  thedpeed ofthe fly in metres per second

(i11) e ageleration of the fly.

n
45rpm = 45 X 2nrad min

Hlnt 45X 2
“““““““““ _ T =il
One revolution i 60 rads
radians. = 371t rads™".
(i) v can be found using
v =rw
oo 3T
=0.08 X 5
=(0.376...

160

So the speed of the fly is 0.38ms™! (to 2 dp).
(i)

The acceleration of the fly is given by

2
r®* = 0.08 X (37“) ms >

=1.78ms?

It 1s directed towards the centre of the record.



The forces required for circular motion

Newton’s first law of motion states that a body will continue in a state of rest or
uniform motion in a straight line unless acted upon by an external force. Any
object moving in a circle, such as the police car and the fly in Examples 6.1 and
6.2, must therefore be acted upon by a resultant force in order to produce the
required acceleration towards the centre.

~J

A force towards the centre is called a centripetal (centre-seeking) force. A resultant
centripetal force is necessary for a particle to move in a circular path.

Examples of circular motion

You are now in a position to use Newton’s second law to determine theoretical
answers to some of the questions which were posed at thé beginning of this

chapter. These will, as usual, be obtained using mod true motion which
will be based on simplitying assumptions, for ex

Example 7.3 A coin is placed on a rotating horizonta e, 5cm from the centre of

in and the turntable is 0.5.

uonow Jejnaaiy £ Jaydeys

ir resistance.

(1) The speed of rotation of the \tu gradually increased. At what
angular speed will th beg

(i)  What happens next:

Solution &
(1) Beca@eed he turntable is increased only gradually, the coin

will tangentially.
7.78hows the forces acting on the coin, and its acceleration.
R
i a=rw?
-~
0 F
e — TR
~——r——>
[ mg
Figure 7.7

The acceleration is towards the centre of the circular path, O, so there
must be a frictional force F in that direction.

There is no vertical component of acceleration, so the resultant force
acting on the coin has no vertical component.

Therefore
R—-mg=0
R =mg @®

By Newton’s second law towards the centre of the circle:
Force F = ma = mr @*

The coin will not slide so long as F < uR. ®
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The conical pendulum

Substituting from (1) and (2) this gives Notice that the mass, /i,
has been eliminated at

this stage, so the answer
= r®* < ug 4 does not depend upon it.

mr@* < umg

Taking ¢ in ms ™2 as 9.8 and substituting r = 0.05 and u = 0.5
®> <98
<98
w<9.89...

The coin will move in a circle provided the angular speed is less than
about 10rads™" and the speed is independent of the mass of the coin.

(i1) When the angular speed increases beyond thigh the coin slips off the
turntable. When it reaches the edge, it will flyfoft in the direction of
the tangent.

3 The conical p

A conical pendulum consist s ed to one end of a string. The
other end of the string is fixed and the bob is made to rotate in a horizontal
circle below the fixed pointgo that the string describes a cone, as in Figure 7.8.

g
Figure 7.8 m showing the magnitude and direction of the acceleration of
the forces acting on it.

at the radius of the circle remains constant, try to predict the
ngular speed when the length of the string is increased or

the mass of the bob is increased. What might happen when the angular
eed increases?

Figure 7.9

3 Draw two circles of equal diameter on horizontal surfaces so that two people can
make the bobs of two conical pendulums rotate in circles of the same radius.

(i) Compare pendulums of different lengths with bobs of equal mass.

(ii) Compare pendulums of the same length but with bobs of different
masses.

Does the angular speed depend on the length of the pendulum or the
mass of the bob?

What happens when somebody makes the speed of the bob increase?
5 Can the bob be made to rotate with the string horizontal?




When you are answering

Theoretical model for the conical pendulum

questions on the conical —

pendulum, you need to
look carefully at the level

of accuracy to which g is
given. Your final answers
should always match the
accuracy of all the given
information.

Figure 7.10

A conical pendulum may be modelled as a particle of mass m attached to a light,
inextensible string of length I. The mass is rotating in a horizontal circle with
angular speed @ and the string makes an angle o with the downward vertical.
The radius of the circle is r and the tension in the string is 7T, all in consistent
units (e.g. S.I. units). The situation is shown in Figure 7.10.

The magnitude of the acceleration is r@?. The acceleration acts in a horizontal
direction towards the centre of the circle. This means that there must be a
resultant force acting towards the centre of the circle.

There are two forces acting on this particle, its weight mg and the tension T in
the string.

As the acceleration of the particle has no vertical component, the resultant force
has no vertical component, so

@

T cosa—mg =10

Using Newton’s second law towards the cen

In triangle AOP
Substituting for r in (2) gives
=

Substituting this in () gives

ml oa—mg =10
<&
oS0 = =5
L ®
This equatio es sufficient information to give theoretical answers to the
questions, in the‘experiment.

onstant and the length of the string is increased, the length

. . - g .
os & increases. Equation (3) indicates that the value of — 7 increases

angular speed @ decreases. Conversely, the angular speed increases
hen the string is shortened.
e mass of the particle does not appear in equation (), so it has no effect
on the angular speed, @.
When the length of the pendulum is unchanged, but the angular speed is
increased, cos o decreases, leading to an increase in the angle o and hence in r.
e If o>90° cosax <0, so % <0, which is impossible. You can see from

Figure 7.10 that the tension in the string must have a vertical component
to balance the weight of the particle.

Example 7.4

An inextensible light string of length 50 cm is attached to a fixed point A that
is 30 cm above a smooth table. The other end is attached to a particle of mass
3kg at point B.The particle is moving in a circle supported by the table with
the string taut.

i) Find the value of the normal force exerted by the table on the particle
when it moving with speed 10cm™.

(i)  Find the speed with which the particle is moving when it is about to
lift from the table

~J
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The conical pendulum

Solution
A
N ; 50 30
[0
B 40
mg
Figure 7.11
23
(1)  The acceleration towards the centre of the circle is VT = % =25,
. . 1/2
i Using F = ma horizontally, T cosat = m—

Notice the use of the
x symbol and the fact ém
that in the first equation 8
the order of the terms Resolving vertically for the mass, N +
matches that in the line "
above.

So if m = 3 and ¢ = 9.80, then

2 2
(i)  The acceleration gowards the centre of the circle is VT = Z—O
2
Using F Zgma hor1 ,you find T cosa = mVT
TXi=ﬁm SO T=ﬁm
5 40 ’ 32

solving vertieally for the mass, N + T sin ¢,
3 v
N + = X 35m =mg

ass is lifting from the table, N = 0, and so v = 22.9cms’’

iagram on the right represents one of several arms of a fairground ride
shown on the left. The arms rotate about an axis and riders sit in chairs linked
to the arms by chains.

Figure 7.12

The chains are 2m long and the arms are 3m long. Find the angle that the
chains make with the vertical when the rider rotates at 1.1rads™.
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Solution

~J

Let T be the resultant tension in the chains holding a chair and let mkg be
the mass of the chair and rider.

3m

r=3+2sina

Figure 7.13

If the chains make an angle o with the vertical, the mogion is in a horizontal
circle with radius given by

uonow Jejnaaiy £ Jaydeys

r=3+2sina.

The magnitude of the acceleration is giye

r@w*= (3 + 2sina) 1.12

It 1s in a horizontal direction re of the circle. Using

Force =

ina =m(3+2sin a)1.1? O
=121 m(3+2sine)

Vertically€I cosler— mg = 0

—_m"

Note T'=sa
T Subst Ti ti :
Since the answer does oS in equation (D :
not depend on the mg Slpce m cancels out at
mass of the rider and COSO{sin(x:l.Zl m(3+2sina) this stage, the angle
. . does not depend on
chalr whenjrioers of = 9.8tanor = 3.63+2.42sinox  ¢—— the mass of the rider.

different masses, o

even no riders, ar . . . . .
the equipment all th This equation cannot be solved directly, but a numerical method will give

chains should make the you the solution 25.5° correct to three significant figures. You might like to
same angle with the solve the equation yourself or check that this solution does in fact satisty the
vertical. equation.
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The conical pendulum

Sometimes a conical pendulum may feature two strings, as in the example below.

Example 7.6

of the informatio
question is accuratete
at least 3 figures. The
reason is that the value
of g is stated to just 2
significant figures. If

¢ had been given to 3
significant figures, for
example as 9.80 or 9.81,
the answers would also
have been given to 3
figures.

A particle C of mass 0.925 kg is moving Al
in a horizontal circle of radius 0.240
m. The centre of the circle is O and C
moves with a constant angular speed of
exactly 5 radians per second.

0.270m

The particle is attached to points A and
B by two light inextensible strings which
are taut. B:

As shown in the diagram the points
O, A and B lie on the axis of rotation.
OB = 0.180 m and AB = 0.270 m.

0.180m !

2

k)l

Taking the value of g to be 9.8 m s~
find the tensions in the two strings.

Solution

Let the tensions in the stri
make with the horizon
’4+0.18° =0.3m

Using Pythagora BC

AC =+0.24° +0.45> =0.51m

_ 024 _
82..., cosa= 051 0.470...

cosﬁ=%=0.8

ertical direction the particle is in equilibrium
2

T sina+T,sin f =mg
0.882...x T, +0.6T, = 9.065 @

In the horizontal direction, the particle is accelerating

towards the centre of the circle Figure 7.15

SO T,cosa+ T, cos B = mo’r

0.470... X T, +0.8T, = 0.925 X 5> X 0.24 = 5.55 @

Solving the simultaneous equations (D) and (2) gives

T,=9258 ... and T,=1.488 ...

— So to 2 significant figures the tensions are 9.3 N in AC and 1.5 N in BC.



0 This section is

extension, stretching

beyond the specification. P

Keep away from other
people and breakable
objects when carrying
out this activity.

Figure 7.18

Discussion point

The direction of the
frictional force F will be
up or down the slope
depending on whether
the car has a tendency
to slip sideways
towards the inside or
outside of the bend.

Under what conditions
do you think each of

4 Banked tracks

ACTIVITY 71

Place a coin on a piece of stiff A4 card and hold it horizontally at arm’s length
with the coin near your hand.

o

Figure 7.16

Turn round slowly so that your hand moves in a horizontal circle. Now gradually
speed up. The outcome will probably not surprise you.
What happens though if you tilt the card?

Figure 7.17

\these will occur? Y,

You may have noticed that when they qurve round bends, most roads are banked
so that the edge at the outside o d is slightly higher than that at the
inside. For the same réason, the outer rail of a railway track is slightly higher than
round the bend. On bobsleigh tracks the bends are
uch greater gradient on the outside.

car rounding a bend on a road which is banked so that the
an angle a with the horizontal.

modelling such situations, it is usual to treat the bend as part of a horizontal
ircle whose radius is large compared to the width of the car. In this case, the
radius of the circle is taken to be r metres, and the speed of the car constant at
v metres per second.

2
The car is modelled as a particle which has an acceleration of “-ms™in a
horizontal direction towards the centre of the circle. The forces and acceleration

are shown in Figure 7.20

2 Resultant normal
acceleration= - R / reaction

centre of circle =

Resultant
sideways friction

Figure 7.20

~J
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Banked tracks

Example 7.7 A car is rounding a bend of radius 100 m which is banked at an angle of 10°

to the horizontal. At what speed must the car travel to ensure that it has no
tendency to slip sideways?

Solution

When there is no tendency to slip there is no frictional force, so, in the
plane perpendicular to the direction of motion of the car, the forces and
acceleration are as shown in Figure 7.21.The only horizontal force is
provided by the horizontal component of the normal reaction of the road
on the car.

The normal reaction
R is resolved into
components

Figure 7.21

Vertically there is no acgéleration s e 1s no resultant force

Rcos10°—mg 8,0

R sin10° horizontally <«
R cos10° vertically T

= = cos10° ®
By Newtgn’s secondplaw in the horizontal direction towards the centre of
the c1
mv

2
_mv

~ 100

Substituting for R from ()

( "3 o)sin10° = m—"2 The mass, m, cancels out
wosll 100 at this stage, so the answer
does not depend on it.
= v’ =100gtan10°"/
= v=13.14...

The speed of the car must be about 13.1ms™" or 30 mph.

There are two important points to notice in this example.

o The speed is the same whatever the mass of the car.

o The example looks at the situation when the car does not tend to slide,
and finds the speed at which this is the case. At this speed, the car does not
depend on friction to keep it from sliding and, indeed, it could travel safely
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round the bend at this speed even in very icy conditions. However, at other
speeds there is a tendency to slide, and friction actually helps the car to
follow its intended path.

~J

Safe speeds on a bend

‘What would happen in the previous example if the car travelled either more
slowly than 13.1ms™! or more quickly?

The answer is that there would be a frictional force acting so as to prevent the
car from sliding across the road.

There are two possible directions for the frictional force. When the vehicle is
stationary or travelling slowly, there is a tendency to slide down the slope and

uoljow Jejnauaiy £ Jaydeyn

the slope.

Fortunately, under most road conditions, the
tyres and the road is large, typically about 0.8.Th
speeds that are safe for negotiating any

Figure 7.22

speed: friction High speed: friction
events the car from prevents the car from
sliding down the slope sliding up the slope

Example 7.8 \ bend on a railway track has a radius of 500m and is to be banked so that a
train can negotiate it at 60 mph without the need for a lateral force between
its wheels and the rail. The distance between the rails is 1.43 m.

How much higher should the outside rail be than the inside one?

Solution

There is very little friction between the track and the wheels of a train. Any
sideways force required is provided by the ‘lateral thrust’ between the wheels
and the rail. The ideal speed for the bend is such that the lateral thrust is
zero.

Figure 7.21 shows the forces acting on the train and its acceleration when
the track is banked at an angle o to the horizontal.
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Banked tracks

Using the fact that 60 mph = 2¢

Figure 7.23

When there is no lateral thrust, L = 0.

[S)

Horizontally: Rsina = % ®
Vertically: Rcosa=mg @

Dividing D) by (2) gives tano =

tano = 0.147
= o= 8.4%(to 2 s.f.
The outside rail should be rai y 1.43 sin & metres, i.e. about 21 cm.

e

ows two cars A and B, travelling at constant speeds in different

4m and 20m) round a circular traffic island. Car A has speed
1

d car B has speed 15ms™.

Figure 7.24

Answer the following questions, giving reasons for your answers.

() Which car has the greater angular speed?

(il Is one car overtaking the other?

il Find the magnitude of the acceleration of each car.

(iv) In which direction is the resultant force on each car acting?

Two coins are placed on a horizontal turntable. Coin A has mass 15g and is
placed 5cm from the centre; coin B has mass 10 g and is placed 7.5 cm from
the centre. The coeflicient of friction between each coin and the turntable
is 0.4.
(il Describe what happens to the coins when the turntable turns at

(a) 6rads™ (b) 8rads™ () 10rads™.

(il What would happen if the coins were interchanged?



1

(3 A caris travelling at a steady speed of 15ms™' round a roundabout of radius

20m on a flat horizontal road.

~J

(il Criticise this false argument:

The car is travelling at a steady speed and so its speed is neither increasing nor
decreasing and therefore the car has no acceleration.

(il  Calculate the magnitude of the acceleration of the car.
il The car has mass 800kg. Calculate the sideways force on each wheel
assuming it to be the same for all four wheels.
(iv) Is the assumption in part (iii) realistic?
® A fairground ride has seats at 3m and at 4.5 m from the centre of rotation.

Each rider travels in a horizontal circle. Say whether each of the following
statements is TRUE or FALSE, giving your reasons.

(il Riders in the two positions have the same angular speed at any time.
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(il Riders in the two positions have the same
(il Riders in the two positions have the
any time.

(®B) A particle C of mass 3.2 kg is movj
horizontal circle of radius r m.

The centre of the circle is O
a constant angular speed radians per
second.

As shown 1 the points O,A and B lie  Figure 7.25

on the axds of retation.
AC =50 =30 cm and BO = 10 cm.

ration due to gravity to be 9.8 ms?, find the tensions in

ac

tions as given in the table below.

Model Rate of rotation Drum diameter
A 600 rpm 60 cm
B 800 rpm 40cm

State with reasons, which model you would expect to be the more effective.

N @ A satellite of mass M, isin a circular orbit around the Earth, with a radius
o p_t_e_ ___________ of r metres. The force of attraction between the Earth and the satellite is
The law found in part given by

(i) was discovered GM M

experimentally by F= Ea

Johannes Kepler '

(1571-1630] to hold where G = 6.67 X 107" in S.I. units. The mass of the earth M is 5.97 X 10*'kg.
true for the planets as ) L .

they orbit the Sun, and () Find in terms of r, expressions for

is commonly known as (a) the speed of the satellite, vms™

NERlers il (B (b) the time T, it takes to complete one revolution.

lil Hence show that, for all satellites, T? is proportional to r*.
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Banked tracks

A geostationary satellite orbits the Earth so that it is always above the same
place on the equator.

liil How far is it from the centre of the Earth?

A rotary lawn mower uses a piece of light nylon string with a small metal
sphere on the end to cut the grass. The string is 20 cm in length and the
mass of the sphere is 30 g.

() Find the tension in the string when the sphere is rotating at 2000 rpm
assuming that the string is horizontal.

(il Explain why it is reasonable to assume that the string is horizontal.
(i) Find the speed of the sphere when the tension in the string is 8ON.

(® In this question, you should assume that the orbit of the Earth around the
Sun is circular, with radius 1.44 X 10" m, and thatghe Sun is fixed.

arth as it orbits the Sun.

(il Find the magnitude of the acceleration of th

The force of attraction between the Earth a
GM_M,

2
r

n is given by

F=

where M is the mass of the Ea
of the Earth’s orbit and G the
S.I. units).

S, t ass of the Sun, r 1s the radius
onstant of gravitation (6.67 X 107"

li) Calculate the mas

(il Comment on the

uch faster could cars travel if the road were banked at an angle
£ 5° to the horizontal?

t inextensible string of length 0.8 m is threaded through a smooth
ring and carries a particle at each end. Particle A of mass mkg is at rest at
a distance of 0.3 m below the ring. The other particle, B, of mass M kg is
rotating in a horizontal circle whose centre is A.

Figure 7.26

(il Express M in terms of m.

(il  Find the angular velocity of B.
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(@ A particle of mass 0.2kg is moving on the smooth inside surface of a fixed
hollow sphere of radius 0.75m.The particle moves in a horizontal circle
whose centre is 0.45m below the centre of the sphere (see Figure 7.24).

~J

Figure 7.27

() Show that the force exerted by the sphere article has
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magnitude % g
(i) Find the speed of the particle.

plete one revolution.

il Find the time taken for the part
(3 A particle P of mass 0.25kg is att:
end of each of two inextensi
are both taut. The other e
string is attached to a fixe

fixed point B, which is vertically below A.

String AP is (¢ and string BP is Figure 7.28

horizontal circle of

th constant angular speed 10rads™". Both strings are taut: T}
in AP and T, is the tension in BP.

another equation connecting T, and T, and hence calculate T,

A particle P of mass m kg is moving in a horizontal R:
ircle of radius r m. The centre of the circle is O and
C moves with a constant angular speed of exactly o
radians per second.

The particle is attached to points Q and R by Q!

two light inextensible strings. The points O,

Q and R lie on a vertical line. The strings RP and |
QP make angles o and g with the horizontal. The O ™77 7"7rm ™™
tension in string RP is T, and that in QP is T,

() Show that when the strings are taut Figure 7.29

m(gcosﬂ—a)zrsinﬂ)

sin(o — B)

(i) What are the implications if the value of T, is zero?

T, =

and find an equivalent expression for T,.
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Banked tracks

@ A particle C of mass 2.0 kg is moving in a Al
horizontal circle of radius r m.

The centre of the circle is O and C moves with
a constant angular speed of exactly 4 radians per
second. 0.90
The particle is attached to points A and B by two
light inextensible strings which are taut.

As shown in Figure 7.30, the points O, A and B lie
on the axis of rotation. The point B is below O.
AO = 0.90 m, OB = 0.40 m and angle ACB is a 0.40

right angle. :
-

Taking ¢ to be 10 m s72, find the tensions in the
: igure 7.30
two strings.
KEY POINTS
1 Position, velocity and acceleration of a pa moving on a circle of radius r.
YA
(r cos @, rsin ) "
ro —r6?

£;
Q r
A WA .
iti Velocity Acceleration

(rcos@, rsin6)
transverse component: v= ré=ro
radial component: 0
where 6 or wis the angular velocity of the particle.
transverse component: ré =rao ,
v

radial component: —r6'2=—rw2=—7

where 6 or is the angular acceleration of the particle.
2 By Newton’s second law, the forces acting on a particle of mass m in circular
motion are equal to
e transverse component: mre = mré
2

: mv
e radial component: e = -—-mra?

2
e orradial component: +¥ = +mray towards the centre

LEARNING OUTCOMES

When you have finished this chapter, you should be able to:

» understand the language and notation associated with circular motion
> identify the forces acting on a body in circular motion

> calculate acceleration towards the centre of circular motion

>

model situations involving circular motion with uniform speed in a horizontal
plane.
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